Lambert Rb Schomaker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8307000/publications.pdf

Version: 2024-02-01

139 papers 4,232 citations

30 h-index 54 g-index

142 all docs 142 docs citations

142 times ranked 1984 citing authors

#	Article	IF	CITATIONS
1	Text-Independent Writer Identification and Verification Using Textural and Allographic Features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29, 701-717.	13.9	412
2	UNIPEN project of on-line data exchange and recognizer benchmarks. , 0, , .		248
3	Automatic writer identification using connected-component contours and edge-based features of uppercase Western script. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26, 787-798.	13.9	212
4	Writer identification using directional ink-trace width measurements. Pattern Recognition, 2012, 45, $162-171$.	8.1	128
5	Fitts' law as a low-pass filter effect of muscle stiffness. Human Movement Science, 1992, 11, 11-21.	1.4	116
6	Text detection from natural scene images: towards a system for visually impaired persons. , 2004, , .		114
7	Neuromotor noise and poor handwriting in children. Acta Psychologica, 1993, 82, 161-178.	1.5	100
8	Writer identification using edge-based directional features. , 0, , .		97
9	DeepOtsu: Document enhancement and binarization using iterative deep learning. Pattern Recognition, 2019, 91, 379-390.	8.1	97
10	Using codebooks of fragmented connected-component contours in forensic and historic writer identification. Pattern Recognition Letters, 2007, 28, 719-727.	4.2	96
11	Predicting Eye Fixations on Complex Visual Stimuli Using Local Symmetry. Cognitive Computation, 2011, 3, 223-240.	5.2	95
12	An overview and comparison of voting methods for pattern recognition. , 0, , .		94
13	Junction detection in handwritten documents and its application to writer identification. Pattern Recognition, 2015, 48, 4036-4048.	8.1	86
14	Effects of motor programming on the power spectral density function of finger and wrist movements Journal of Experimental Psychology: Human Perception and Performance, 1990, 16, 755-765.	0.9	81
15	Comparing Local Descriptors and Bags of Visual Words to Deep Convolutional Neural Networks for Plant Recognition. , 2017, , .		77
16	Writer identification using curvature-free features. Pattern Recognition, 2017, 63, 451-464.	8.1	75
17	Text-Independent Writer Identification and Verification on Offline Arabic Handwriting. Proc Int Conf Doc Anal Recognit, 2007, , .	0.0	72
18	Recognition of handwritten characters using local gradient feature descriptors. Engineering Applications of Artificial Intelligence, 2015, 45, 405-414.	8.1	72

#	Article	IF	Citations
19	The relation between pen force and pen-point kinematics in handwriting. Biological Cybernetics, 1990, 63, 277-289.	1.3	62
20	Handwritten-Word Spotting Using Biologically Inspired Features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30, 1945-1957.	13.9	62
21	Deep adaptive learning for writer identification based on single handwritten word images. Pattern Recognition, 2019, 88, 64-74.	8.1	58
22	Data Augmentation for Plant Classification. Lecture Notes in Computer Science, 2017, , 615-626.	1.3	57
23	FragNet: Writer Identification Using Deep Fragment Networks. IEEE Transactions on Information Forensics and Security, 2020, 15, 3013-3022.	6.9	55
24	Advances in Writer Identification and Verification. Proc Int Conf Doc Anal Recognit, 2007, , .	0.0	52
25	Invariant properties between stroke features in handwriting. Acta Psychologica, 1993, 82, 69-88.	1.5	50
26	One-vs-One classification for deep neural networks. Pattern Recognition, 2020, 108, 107528.	8.1	48
27	Motor Unit Firing Rate During Static Contraction Indicated by the Surface EMG Power Spectrum. IEEE Transactions on Biomedical Engineering, 1983, BME-30, 601-609.	4.2	47
28	Using stroke- or character-based self-organizing maps in the recognition of on-line, connected cursive script. Pattern Recognition, 1993, 26, 443-450.	8.1	47
29	Influence of motor unit firing statistics on the median frequency of the EMG power spectrum. European Journal of Applied Physiology and Occupational Physiology, 1984, 52, 207-213.	1.2	38
30	Layout Analysis of Handwritten Historical Documents for Searching the Archive of the Cabinet of the Dutch Queen. Proc Int Conf Doc Anal Recognit, 2007, , .	0.0	37
31	Towards Style-Based Dating of Historical Documents. , 2014, , .		36
32	From handwriting analysis to pen-computer applications. Electronics and Communication Engineering Journal, 1998, 10, 93-102.	0.5	35
33	AUTOMATIC ALLOGRAPH MATCHING IN FORENSIC WRITER IDENTIFICATION. International Journal of Pattern Recognition and Artificial Intelligence, 2007, 21, 61-81.	1.2	35
34	A Comparison of Feature and Pixel-Based Methods for Recognizing Handwritten Bangla Digits. , 2013, , .		35
35	Image-based historical manuscript dating using contour and stroke fragments. Pattern Recognition, 2016, 58, 159-171.	8.1	35
36	Limb-Segment Selection in Drawing Behaviour. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 1993, 46, 273-299.	2.3	34

#	Article	IF	CITATIONS
37	Automatic Writer Identification Using Fragmented Connected-Component Contours., 0,,.		34
38	Reinforcement learning algorithms for solving classification problems. , 2011, , .		33
39	Beyond OCR: Multi-faceted understanding of handwritten document characteristics. Pattern Recognition, 2017, 63, 321-333.	8.1	33
40	Finding features used in the human reading of cursive handwriting. International Journal on Document Analysis and Recognition, 1999, 2, 13-18.	3.4	32
41	Delta-n Hinge: Rotation-Invariant Features for Writer Identification. , 2014, , .		31
42	Amplitude and Bandwidth of the Frontalis Surface EMG: Effects of Electrode Parameters. Psychophysiology, 1984, 21, 699-707.	2.4	30
43	GR-RNN: Global-context residual recurrent neural networks for writer identification. Pattern Recognition, 2021, 117, 107975.	8.1	30
44	Effects of motor programming on the power spectral density function of finger and wrist movements Journal of Experimental Psychology: Human Perception and Performance, 1990, 16, 755-765.	0.9	28
45	Writer Style from Oriented Edge Fragments. Lecture Notes in Computer Science, 2003, , 460-469.	1.3	27
46	Automatic Handwriting Identification on Medieval Documents., 2007,,.		26
47	Hyperspectral demosaicking and crosstalk correction using deep learning. Machine Vision and Applications, 2019, 30, 1-21.	2.7	26
48	Using Pen-Based Outlines for Object-Based Annotation and Image-Based Queries. Lecture Notes in Computer Science, 1999, , 585-592.	1.3	26
49	Feature-extraction methods for historical manuscript dating based on writing style development. Pattern Recognition Letters, 2020, 131, 413-420.	4.2	25
50	Historical manuscript dating based on temporal pattern codebook. Computer Vision and Image Understanding, 2016, 152, 167-175.	4.7	24
51	A comparison of clustering methods for writer identification and verification. , 2005, , .		23
52	Towards robust writer verification by correcting unnatural slant. Pattern Recognition Letters, 2011, 32, 449-457.	4.2	23
53	Comparative study between deep learning and bag of visual words for wild-animal recognition. , 2016, ,		23
54	Operational data augmentation in classifying single aerial images of animals. , 2017, , .		22

#	Article	IF	Citations
55	Melodic Cues for Metre. Perception, 1994, 23, 965-976.	1.2	21
56	Finding structure in diversity: a hierarchical clustering method for the categorization of allographs in handwriting. , 0, , .		21
57	Architectures for detecting and solving conflicts: two-stage classification and support vector classifiers. International Journal on Document Analysis and Recognition, 2003, 5, 213-223.	3.4	20
58	Towards Explainable Writer Verification and Identification Using Vantage Writers. Proc Int Conf Doc Anal Recognit, 2007, , .	0.0	20
59	A Path Planning for Line Segmentation of Handwritten Documents. , 2014, , .		20
60	An analysis of rotation matrix and colour constancy data augmentation in classifying images of animals. Journal of Information and Telecommunication, 2018, 2, 465-491.	2.8	20
61	Separability versus prototypicality in handwritten word-image retrieval. Pattern Recognition, 2014, 47, 1031-1038.	8.1	19
62	Accelerating Reinforcement Learning for Reaching Using Continuous Curriculum Learning. , 2020, , .		19
63	Between-Letter Context Effects in Handwriting Trajectories. Advances in Psychology, 1986, 37, 253-272.	0.1	18
64	A Multiple-Label Guided Clustering Algorithm for Historical Document Dating and Localization. IEEE Transactions on Image Processing, 2016, 25, 5252-5265.	9.8	18
65	How much handwritten text is needed for text-independent writer verification and identification. , 2008, , .		17
66	Artificial intelligence based writer identification generates new evidence for the unknown scribes of the Dead Sea Scrolls exemplified by the Great Isaiah Scroll (1QIsaa). PLoS ONE, 2021, 16, e0249769.	2.5	16
67	The Influence of Changes in the Effector Coordinate System on Handwriting Movements. Advances in Psychology, 1986, 37, 33-46.	0.1	14
68	<title>Automatic removal of crossed-out handwritten text and the effect on writer verification and identification</title> . Proceedings of SPIE, 2008, , .	0.8	14
69	Text-image alignment for historical handwritten documents. Proceedings of SPIE, 2009, , .	0.8	14
70	Sparse-parametric writer identification using heterogeneous feature groups. , 0, , .		13
71	Multi-script text versus non-text classification of regions in scene images. Journal of Visual Communication and Image Representation, 2019, 62, 23-42.	2.8	13
72	New use for the pen: outline-based image queries. , 1999, , .		12

#	Article	IF	Citations
73	A Polar Stroke Descriptor for classification of historical documents., 2015,,.		12
74	A Digital Palaeographic Approach towards Writer Identification in the Dead Sea Scrolls., 2017,,.		12
75	Habituation of the human blink reflex: The effect of stimulus frequency and the state of arousal. Physiological Psychology, 1982, 10, 325-330.	0.8	11
76	Writer Identification and Verification. , 2008, , 247-264.		11
77	CentroidNetV2: A hybrid deep neural network for small-object segmentation and counting. Neurocomputing, 2021, 423, 490-505.	5.9	11
78	Towards a Digital Infrastructure for Illustrated Handwritten Archives. Lecture Notes in Computer Science, 2018, , 155-166.	1.3	11
79	Robust Face Recognition by Computing Distances From Multiple Histograms of Oriented Gradients. , 2015, , .		10
80	Zero-Shot Learning Based Approach For Medieval Word Recognition using Deep-Learned Features. , 2018, , .		10
81	A neural oscillator-network model of temporal pattern generation. Human Movement Science, 1992, 11, 181-192.	1.4	9
82	Recognition of Handwritten Numerical Fields in a Large Single-Writer Historical Collection., 2009,,.		9
83	Evaluating automatically parallelized versions of the support vector machine. Concurrency Computation Practice and Experience, 2016, 28, 2274-2294.	2.2	9
84	No Padding Please: Efficient Neural Handwriting Recognition. , 2019, , .		9
85	Vind(x): using the user through cooperative annotation. , 0 , , .		8
86	Where are the Search Engines for Handwritten Documents?. Interdisciplinary Science Reviews, 2009, 34, 224-235.	1.4	8
87	Machine learning for multi-view eye-pair detection. Engineering Applications of Artificial Intelligence, 2014, 33, 69-79.	8.1	8
88	General Pattern Run-Length Transform for Writer Identification. , 2016, , .		8
89	Design considerations for a large-scale image-based text search engine in historical manuscript collections. IT - Information Technology, 2016, 58, 80-88.	0.9	8
90	An Investigation Into the Effect of the Learning Rate on Overestimation Bias of Connectionist Q-learning. , $2021, , .$		8

#	Article	IF	Citations
91	Generative Artificial Intelligence. Studies in Applied Philosophy, Epistemology and Rational Ethics, 2013, , 107-120.	0.3	8
92	Retrieval of Handwritten Lines in Historical Documents. Proc Int Conf Doc Anal Recognit, 2007, , .	0.0	7
93	Discovering Visual Element Evolutions for Historical Document Dating. , 2016, , .		7
94	A limited-size ensemble of homogeneous CNN/LSTMs for high-performance word classification. Neural Computing and Applications, 2021, 33, 8615-8634.	5.6	7
95	Co-occurrence Features for Writer Identification. , 2016, , .		6
96	Learning to Grasp 3D Objects using Deep Residual U-Nets., 2020,,.		6
97	Two-stage visual navigation by deep neural networks and multi-goal reinforcement learning. Robotics and Autonomous Systems, 2021, 138, 103731.	5.1	6
98	Segmental K-Means Learning with Mixture Distribution for HMM Based Handwriting Recognition. Lecture Notes in Computer Science, 2011, , 432-439.	1.3	6
99	Self-Imitation Learning by Planning. , 2021, , .		6
100	Anticipation in cybernetic systems: a case against mindless anti-representationalism. , 0, , .		5
101	Pen force emulating robotic writing device and its application. , 2005, , .		5
102	Indoor localization by denoising autoencoders and semi-supervised learning in 3D simulated environment. , 2015, , .		5
103	Historical Document Dating Using Unsupervised Attribute Learning. , 2016, , .		5
104	CT-Net: Cascade T-shape deep fusion networks for document binarization. Pattern Recognition, 2021, 118, 108010.	8.1	5
105	IMU-based Deep Neural Networks for Locomotor Intention Prediction. , 2020, , .		5
106	A Reevaluation and Benchmark of Hidden Markov Models. , 2014, , .		4
107	Bangla Handwritten Character Segmentation Using Structural Features. ACM Transactions on Asian and Low-Resource Language Information Processing, 2016, 15, 1-26.	2.0	4
108	Deep Learning for Classification and as Tapped-Feature Generator in Medieval Word-Image Recognition. , 2018, , .		4

#	Article	IF	CITATIONS
109	HANDWRITTEN CHARACTER CLASSIFICATION USING THE HOTSPOT FEATURE EXTRACTION TECHNIQUE. , 2012, , .		4
110	On the use and Limitations of Averaging Handwriting Signals. Advances in Psychology, 1986, , 225-238.	0.1	3
111	Verifying the UNIPEN Devset. , 0, , .		3
112	The WANDAML Markup Language for Digital Document Annotation. , 0, , .		3
113	<title>Word mining in a sparsely labeled handwritten collection</title> ., 2008, , .		3
114	Ensemble Methods for Robust 3D Face Recognition Using Commodity Depth Sensors. , 2015, , .		3
115	A METHOD FOR THE DETERMINATION OF FEATURES USED IN HUMAN READING OF CURSIVE HANDWRITING. Series in Machine Perception and Artificial Intelligence, 1999, , 193-202.	0.1	3
116	A Deep Convolutional Neural Network for Location Recognition and Geometry based Information. , 2018, , .		3
117	Object Attention Patches for Text Detection and Recognition in Scene Images using SIFT. , 2015, , .		3
118	Active Learning for Reducing Labeling Effort in Text Classification Tasks. Communications in Computer and Information Science, 2022, , 3-29.	0.5	3
119	Using symmetrical regions of interest to improve visual SLAM. , 2009, , .		2
120	Recognizing Bengali Word Images - A Zero-Shot Learning Perspective. , 2021, , .		2
121	Detection and Recognition of Badgers Using Deep Learning. Lecture Notes in Computer Science, 2018, , 554-563.	1.3	2
122	Deep Learning with Data Augmentation for Fruit Counting. Lecture Notes in Computer Science, 2020, , 203-214.	1.3	2
123	Power spectra of surface EMG of facial and jaw-elevator muscles in relation to motor unit firing rate and fatigue. Electroencephalography and Clinical Neurophysiology, 1983, 56, S191.	0.3	1
124	Dynamic parameter update for robot navigation systems through unsupervised environmental situational analysis. , $2016, \dots$		1
125	Musicologist-driven writer identification in early music manuscripts. Multimedia Tools and Applications, 2016, 75, 6463-6479.	3.9	1
126	A Fully Automated End-to-End Process for Fluorescence Microscopy Images of Yeast Cells: From Segmentation to Detection and Classification. Lecture Notes in Electrical Engineering, 2022, , 37-46.	0.4	1

#	Article	IF	CITATIONS
127	<title>Large scale parallel document image processing</title> ., 2008, , .		1
128	Using Local Symmetry for Landmark Selection. Lecture Notes in Computer Science, 2009, , 94-103.	1.3	1
129	Cognitive Developmental Pattern Recognition: Learning to learn. , 2006, , .		O
130	<title>Interactive evolutionary computing for the binarization of degenerated handwritten images</title> . Proceedings of SPIE, 2008, , .	0.8	0
131	Message from the General and Program Chairs. , 2010, , .		0
132	Separability versus Prototypicality in Handwritten Word Retrieval., 2012,,.		0
133	Explicit foreground and background modeling in the classification of text blocks in scene images. , $2015, \ldots$		0
134	Reinforcement Learning with Potential Functions Trained to Discriminate Good and Bad States. , 2021, , .		0
135	Reading Systems: An Introduction to Digital Document Processing. Advances in Pattern Recognition, 2007, , 1-28.	0.8	0
136	Writer Identification in Old Music Manuscripts Using Contour-Hinge Feature and Dimensionality Reduction with an Autoencoder. Lecture Notes in Computer Science, 2013, , 555-562.	1.3	0
137	General Text-Chunk Localization in Scene Images using a Codebook-based Classifier. , 2016, , .		0
138	Deep Learning Policy Quantization. , 2018, , .		0
139	Improving the robustness of LSTMs for word classification using stressed word endings in dual-state word-beam search., 2020,,.		O