
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8306871/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct comparison of catalyst-free and catalyst-induced GaN nanowires. Nano Research, 2010, 3, 528-536.	5.8	161
2	High-quality, large-area MoSe ₂ and MoSe ₂ /Bi ₂ Se ₃ heterostructures on AlN(0001)/Si(111) substrates by molecular beam epitaxy. Nanoscale, 2015, 7, 7896-7905.	2.8	122
3	Properties of GaN Nanowires Grown by Molecular Beam Epitaxy. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 878-888.	1.9	104
4	Heteroepitaxial growth of In-face InN on GaN (0001) by plasma-assisted molecular-beam epitaxy. Journal of Applied Physics, 2005, 97, 113520.	1.1	88
5	Synthesis, characterization and thermal properties of polymer/magnetite nanocomposites. Nanotechnology, 2006, 17, 2046-2053.	1.3	84
6	Axial and radial growth of Ni-induced GaN nanowires. Applied Physics Letters, 2007, 91, .	1.5	74
7	Indium migration paths in V-defects of InAlN grown by metal-organic vapor phase epitaxy. Applied Physics Letters, 2009, 95, 071905.	1.5	64
8	Internal quantum efficiency of III-nitride quantum dot superlattices grown by plasma-assisted molecular-beam epitaxy. Journal of Applied Physics, 2011, 109, 103501.	1.1	63
9	Vitrification of lead-rich solid ashes from incineration of hazardous industrial wastes. Waste Management, 2003, 23, 361-371.	3.7	58
10	Nanostructure and strain in InGaN/GaN superlattices grown in GaN nanowires. Nanotechnology, 2013, 24, 435702.	1.3	58
11	Misfit relaxation of theAlN/Al2O3(0001) interface. Physical Review B, 2001, 64, .	1.1	57
12	Microstructural changes of processed vitrified solid waste products. Journal of the European Ceramic Society, 2003, 23, 1305-1311.	2.8	57
13	Generation and annihilation of antiphase domain boundaries in GaAs on Si grown by molecular beam epitaxy. Journal of Materials Research, 1993, 8, 1908-1921.	1.2	50
14	Mechanism of compositional modulations in epitaxial InAlN films grown by molecular beam epitaxy. Applied Physics Letters, 2009, 95, .	1.5	48
15	Control of the polarity of molecular-beam-epitaxy-grown GaN thin films by the surface nitridation of Al2O3 (0001) substrates. Applied Physics Letters, 2002, 80, 2886-2888.	1.5	46
16	Defects, strain relaxation, and compositional grading in high indium content InGaN epilayers grown by molecular beam epitaxy. Journal of Applied Physics, 2015, 118, .	1.1	45
17	Dislocation core investigation by geometric phase analysis and the dislocation density tensor. Journal Physics D: Applied Physics, 2008, 41, 035408.	1.3	44
18	A modified empirical potential for energetic calculations of planar defects in GaN. Computational Materials Science, 2003, 27, 43-49.	1.4	42

#	Article	IF	CITATIONS
19	Optical Encoding by Plasmon-Based Patterning: Hard and Inorganic Materials Become Photosensitive. Nano Letters, 2012, 12, 259-263.	4.5	42
20	Misfit accommodation of compact and columnar InN epilayers grown on Ga-face GaN (0001) by molecular-beam epitaxy. Applied Physics Letters, 2005, 86, 151905.	1.5	38
21	Observation of Surface Dirac Cone in High-Quality Ultrathin Epitaxial Bi ₂ Se ₃ Topological Insulator on AlN(0001) Dielectric. ACS Nano, 2014, 8, 6614-6619.	7.3	37
22	Structural properties of 10 μm thick InN grown on sapphire (0001). Superlattices and Microstructures, 2006, 40, 246-252.	1.4	32
23	Vitrification of incinerated tannery sludge in silicate matrices for chromium stabilization. Waste Management, 2017, 59, 237-246.	3.7	32
24	Dislocation movements and deformation twinning in zinc. Acta Metallurgica, 1988, 36, 2493-2502.	2.1	31
25	Optical and electrical properties of TiN/n-GaN contacts in correlation with their structural properties. Semiconductor Science and Technology, 2003, 18, 594-601.	1.0	29
26	Atomic structures and energies of partial dislocations in wurtzite GaN. Physical Review B, 2004, 70, .	1.1	29
27	Selective-area growth of GaN nanowires on SiO2-masked Si (111) substrates by molecular beam epitaxy. Journal of Applied Physics, 2016, 119, 224305.	1.1	29
28	Topological Analysis of Defects in Epitaxial Nitride Films and Interfaces. Physica Status Solidi (B): Basic Research, 2001, 227, 45-92.	0.7	27
29	Structural transition of inversion domain boundaries through interactions with stacking faults in epitaxial GaN. Physical Review B, 2001, 64, .	1.1	26
30	On the deposition mechanisms and the formation of glassy Cu–Zr thin films. Journal of Applied Physics, 2010, 107, .	1.1	26
31	Analysis of partial dislocations in wurtzite GaN using gradient elasticity. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2161-2166.	0.8	25
32	Structure effects on the magnetism of AgCo nanoparticles. Acta Materialia, 2006, 54, 5251-5260.	3.8	25
33	Misfit dislocations and antiphase domain boundaries in GaAs/Si interface. Journal of Applied Physics, 1994, 75, 143-152.	1.1	23
34	Partial dislocations in wurtzite GaN. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 2888-2899.	0.8	23
35	Effect of edge threading dislocations on the electronic structure of InN. Applied Physics Letters, 2011, 98, .	1.5	23
36	Nanospheres and nanoflowers of copper bismuth sulphide (Cu3BiS3): Colloidal synthesis, structural, optical and electrical characterization. Journal of Alloys and Compounds, 2019, 776, 142-148.	2.8	23

#	Article	IF	CITATIONS
37	Low-field giant magnetoresistance in (111)-textured Co/Au multilayers prepared with magnetron sputtering. Journal of Applied Physics, 1998, 84, 6221-6228.	1.1	22
38	Interatomic potential calculations of III(Al, In)–N planar defects with a IIIâ€species environment approach. Physica Status Solidi (B): Basic Research, 2008, 245, 1118-1124.	0.7	22
39	Slip transfer across low-angle grain boundaries of deformed Titanium. Scripta Metallurgica Et Materialia, 1995, 33, 1883-1888.	1.0	21
40	Epitaxial growth and self-organized superlattice structures in AlGaN films grown by plasma assisted molecular beam epitaxy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 87, 227-236.	1.7	21
41	Effects of the Sapphire Nitridation on the Polarity and Structural Properties of GaN Layers Grown by Plasma-Assisted MBE. Physica Status Solidi A, 2001, 188, 567-570.	1.7	21
42	High power ultraviolet light emitting diodes based on GaNâ^•AlGaN quantum wells produced by molecular beam epitaxy. Journal of Applied Physics, 2006, 100, 104506.	1.1	21
43	Polar AlN/GaN interfaces: Structures and energetics. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1892-1897.	0.8	20
44	Morphology and strain of self-assembled semipolar GaN quantum dots in (112Â ⁻ 2) AlN. Journal of Applied Physics, 2010, 108, .	1.1	20
45	The Microstructure of Ti/Al and TiN Ohmic Contacts to Gallium Nitride. Physica Status Solidi A, 1999, 176, 767-771.	1.7	19
46	Effects of ion implantation on the mechanical behavior of GaN films. Thin Solid Films, 2007, 515, 3011-3018.	0.8	19
47	Structural role and coordination environment of Fe in Fe2O3–PbO–SiO2–Na2O composite glasses. Journal of Non-Crystalline Solids, 2008, 354, 105-111.	1.5	19
48	Improved luminescence and thermal stability of semipolar (11-22) InGaN quantum dots. Applied Physics Letters, 2011, 98, 201911.	1.5	19
49	Understanding the effects of Si (111) nitridation on the spontaneous growth and properties of GaN nanowires. Journal of Crystal Growth, 2016, 442, 8-13.	0.7	19
50	Silver Nanoparticles and Graphitic Carbon Through Thermal Decomposition of a Silver/Acetylenedicarboxylic Salt. Nanoscale Research Letters, 2009, 4, 1358-64.	3.1	18
51	Piezoelectric InAs (211)B quantum dots grown by molecular beam epitaxy: Structural and optical properties. Journal of Applied Physics, 2010, 108, 103525.	1.1	18
52	Broad compositional tunability of indium tin oxide nanowires grown by the vapor-liquid-solid mechanism. APL Materials, 2014, 2, .	2.2	18
53	Study of annealing induced devitrification of stabilized industrial waste glasses by means of micro-X-ray fluorescence mapping and absorption fine structure spectroscopy. Journal of Non-Crystalline Solids, 2005, 351, 2474-2480.	1.5	17
54	Crystal phase separation and microstructure of a thermally treated vitrified solid waste. Journal of the European Ceramic Society, 2006, 26, 1141-1148.	2.8	17

#	Article	IF	CITATIONS
55	Structural characterization of Na2O–CaO–SiO2 glass ceramics reinforced with electric arc furnace dust. Journal of the European Ceramic Society, 2007, 27, 2423-2431.	2.8	17
56	Metal-containing amorphous carbon (a-C:Ag) and AlN (AlN:Ag) metallo-dielectric nanocomposites. Thin Solid Films, 2009, 518, 1508-1511.	0.8	17
57	Dependence of exchange bias energy on spin projections at (La,Ca)MnO3 ferromagnetic/antiferromagnetic interfaces. Journal of Applied Physics, 2002, 92, 397-405.	1.1	16
58	On the distribution and bonding environment of Zn and Fe in glasses containing electric arc furnace dust: A μ-XAFS and μ-XRF study. Journal of Hazardous Materials, 2007, 142, 297-304.	6.5	16
59	Electronic structure of 1/6ã€^202Â ⁻ 3〉 partial dislocations in wurtzite GaN. Journal of Applied Physics, 2011, 109, .	1.1	16
60	Growth of InAs/GaAs quantum dots covered by GaAsSb in multiple structures studied by reflectance anisotropy spectroscopy. Journal of Crystal Growth, 2015, 414, 156-160.	0.7	16
61	Structural anisotropic properties of <i>a</i> -plane GaN epilayers grown on <i>r</i> -plane sapphire by molecular beam epitaxy. Journal of Applied Physics, 2014, 115, .	1.1	16
62	Gold films epitaxially grown by diffusion at the 3C–SiC/Si interface. Journal of Crystal Growth, 1999, 203, 103-112.	0.7	15
63	Polycrystalline diamond formation by post-growth ion bombardment of sputter-deposited amorphous carbon films. Carbon, 1999, 37, 865-869.	5.4	15
64	Growth of fcc Co in sputter-deposited Co/Au multilayers with (111) texture. Journal of Crystal Growth, 2000, 208, 401-408.	0.7	15
65	Effect of composition and annealing temperature on the mechanical properties of a vitrified waste. Journal of the European Ceramic Society, 2004, 24, 2095-2102.	2.8	15
66	Study of InN/GaN interfaces using molecular dynamics. Journal of Materials Science, 2008, 43, 3982-3988.	1.7	15
67	Stranski–Krastanow growth of (112Â⁻2)-oriented GaN/AlN quantum dots. Applied Physics Letters, 2009, 94, 111901.	1.5	15
68	Transport properties of metal–semiconductor junctions on n-type InP prepared by electrophoretic deposition of Pt nanoparticles. Semiconductor Science and Technology, 2014, 29, 045017.	1.0	15
69	Atomic core configurations of the -screw basal dislocation in wurtzite GaN. Journal of Crystal Growth, 2007, 300, 212-216.	0.7	14
70	Step-induced misorientation of GaN grown on r-plane sapphire. Applied Physics Letters, 2008, 93, 021910.	1.5	14
71	Interfacial structure of semipolar AlN grown on <i>m</i> -plane sapphire by MBE. Physica Status Solidi (B): Basic Research, 2010, 247, 1637-1640.	0.7	14
72	Junction Line Disclinations: Characterisation and Observations. Journal of Materials Science, 1999, 7, 217-229.	1.2	13

#	Article	IF	CITATIONS
73	Correlation between nucleation, morphology and residual strain of InN grown on Ga-face GaN (0001). Journal of Crystal Growth, 2005, 278, 367-372.	0.7	13
74	Screw threading dislocations in AlN: Structural and electronic properties of In and O doped material. Journal of Applied Physics, 2011, 110, 053715.	1.1	13
75	Ultrafast pulsed laser deposition of carbon nanostructures: Structural and optical characterization. Applied Surface Science, 2013, 278, 101-105.	3.1	13
76	Understanding the role of defects in Silicon Nitride-based resistive switching memories through oxygen doping. IEEE Nanotechnology Magazine, 2021, , 1-1.	1.1	13
77	Microstructure of planar defects and their interactions in wurtzite GaN films. Solid-State Electronics, 2003, 47, 553-557.	0.8	12
78	Strain distribution of thin InN epilayers grown on (0001) GaN templates by molecular beam epitaxy. Applied Physics Letters, 2007, 90, 061920.	1.5	12
79	Core models of <i>a</i> â€edge threading dislocations in wurtzite III(Al,Ga,In)â€nitrides. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1931-1935.	0.8	12
80	The heterogeneous nucleation of threading dislocations on partial dislocations in III-nitride epilayers. Scientific Reports, 2020, 10, 17371.	1.6	12
81	Junction lines of inversion domain boundaries with stacking faults in GaN. Physical Review B, 2004, 70,	1.1	11
82	Microstructural assessment of InN-on-GaN films grown by plasma-assisted MBE. Superlattices and Microstructures, 2004, 36, 509-515.	1.4	11
83	Energetics of the 30â~ Shockley partial dislocation in wurtzite GaN. Superlattices and Microstructures, 2006, 40, 458-463.	1.4	11
84	3D modelling of misfit networks in the interface region of heterostructures. Journal Physics D: Applied Physics, 2007, 40, 4084-4091.	1.3	11
85	Growth and characterization of polar (0001) and semipolar (11â^'22) InGaN/GaN quantum dots. Journal of Crystal Growth, 2011, 323, 161-163.	0.7	11
86	Growth mechanism and microstructure of low defect density InN (0001) In-face thin films on Si (111) substrates. Journal of Applied Physics, 2013, 114, 163519.	1.1	11
87	Dissociation of the 60° basal dislocation in wurtzite GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 84-88.	0.8	11
88	Structural and electronic properties of GaN nanowires with embedded InxGa1â^'xN nanodisks. Journal of Applied Physics, 2015, 118, 034301.	1.1	11
89	Compositional and strain analysis of In(Ga)N/GaN short period superlattices. Journal of Applied Physics, 2018, 123, 024304.	1.1	11
90	Crystalline structures of carbon complexes in amorphous carbon films. Diamond and Related Materials, 2000, 9, 703-706.	1.8	10

#	Article	IF	CITATIONS
91	Interfacial structure of MBE grown InN on GaN. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 777-780.	0.8	10
92	Strain relaxation in AlN/GaN heterostructures grown by molecular beam epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2569-2572.	0.8	10
93	Comparison of Fe and Si doping of GaN: An EXAFS and Raman study. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 723-726.	1.7	10
94	Electronic properties and bonding characteristics of AlN:Ag thin film nanocomposites. Journal of Applied Physics, 2011, 109, .	1.1	10
95	Morphology and origin of V-defects in semipolar (11–22) InGaN. Journal of Crystal Growth, 2012, 339, 1-7.	0.7	10
96	The 60° basal dislocation in wurtzite GaN: Energetics, electronic and core structures. Computational Materials Science, 2013, 79, 118-124.	1.4	10
97	Optical properties of GaN-based nanowires containing a single Al _{0.14} Ga _{0.86} N/GaN quantum disc. Nanotechnology, 2013, 24, 125201.	1.3	10
98	Effect of the lower and upper interfaces on the quality of InAs/GaAs quantum dots. Applied Surface Science, 2014, 301, 173-177.	3.1	10
99	Effect of Sintering Temperature of Bioactive Glass Nanoceramics on the Hemolytic Activity and Oxidative Stress Biomarkers in Erythrocytes. Cellular and Molecular Bioengineering, 2020, 13, 201-218.	1.0	10
100	Defect microstructure in laserâ€assisted modulation molecularâ€beam epitaxy GaAs on (100) silicon. Journal of Applied Physics, 1990, 68, 3298-3302.	1.1	9
101	Microstructure of GaN Films Grown by RF-Plasma Assisted Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 2000, 639, 3471.	0.1	9
102	Interfacial and defect structures in multilayered GaN/AlN films. Journal of Physics Condensed Matter, 2002, 14, 13277-13283.	0.7	9
103	A parametric study of implantation-induced variations on the mechanical properties of epitaxial GaN. Journal of Physics Condensed Matter, 2002, 14, 12953-12959.	0.7	9
104	Mixed partial dislocation core structure in GaN by high resolution electron microscopy. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2156-2160.	0.8	9
105	Structure, stability and mechanical performance of AlN:Ag nanocomposite films. Surface and Coatings Technology, 2010, 204, 1937-1941.	2.2	9
106	Structural properties of SnO ₂ nanowires and the effect of donor like defects on its charge distribution. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 226-229.	0.8	9
107	MOVPE prepared InAs/GaAs quantum dots covered by GaAsSb layer with long wavelength emission at 1.8µm. Journal of Crystal Growth, 2015, 414, 167-171.	0.7	9
108	Laser-matter interactions, phase changes and diffusion phenomena during laser annealing of plasmonic AlN:Ag templates and their applications in optical encoding. Journal Physics D: Applied Physics, 2015, 48, 285306.	1.3	9

#	Article	lF	CITATIONS
109	Ordered structures in III-Nitride ternary alloys. Computational Materials Science, 2016, 118, 22-31.	1.4	9
110	Deformation and fracture in (0001) and (10-10) GaN single crystals. Materials Science and Technology, 2018, 34, 1531-1538.	0.8	9
111	Substitutional synthesis of sub-nanometer InGaN/GaN quantum wells with high indium content. Scientific Reports, 2021, 11, 20606.	1.6	9
112	Interfacial dislocation arrays in twin boundaries of deformed titanium. Scripta Metallurgica Et Materialia, 1994, 30, 1311-1315.	1.0	8
113	Structural properties of ZnSe epilayers on (111) GaAs. Journal of Applied Physics, 2001, 90, 3301-3307.	1.1	8
114	Atomic-scale models of interactions between inversion domain boundaries and intrinsic basal stacking faults in GaN. Diamond and Related Materials, 2002, 11, 905-909.	1.8	8
115	Correlation of structure and magnetism of AgCo nanoparticle arrays. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1253-E1254.	1.0	8
116	Depth profile of the biaxial strain in a 10â€,μm thick InN (0001) film. Journal of Applied Physics, 2006, 100, 113516.	1.1	8
117	Effect of AlN interlayers in the structure of GaN-on-Si grown by plasma-assisted MBE. Journal of Crystal Growth, 2009, 311, 2010-2015.	0.7	8
118	Structural properties of semipolar InGaN/GaN quantum dot superlattices grown by plasma-assisted MBE. Microelectronic Engineering, 2012, 90, 108-111.	1.1	8
119	Combined vertically correlated InAs and GaAsSb quantum dots separated by triangular GaAsSb barrier. Journal of Applied Physics, 2013, 114, 174305.	1.1	8
120	Influence of laser annealing on the structural properties of sputtered AlN:Ag plasmonic nanocomposites. Journal of Materials Science, 2014, 49, 3996-4006.	1.7	8
121	Misfit dislocation reduction in InGaAs epilayers grown on porous GaAs substrates. Applied Surface Science, 2014, 306, 89-93.	3.1	8
122	The influence of structural characteristics on the electronic and thermal properties of GaN/AlN core/shell nanowires. Journal of Applied Physics, 2016, 119, .	1.1	8
123	Decorated Dislocations against Phonon Propagation for Thermal Management. ACS Applied Energy Materials, 2020, 3, 2682-2694.	2.5	8
124	Topology of twin junctions in epitaxial β-SiC. Diamond and Related Materials, 1997, 6, 1362-1364.	1.8	7
125	Anisotropic microhardness and crack propagation in epitaxially grown GaN films. Journal of Physics Condensed Matter, 2000, 12, 10241-10247.	0.7	7
126	Raman and transmission electron microscopy characterization of InN samples grown on GaN/Al2O3 by molecular beam epitaxy. Physica Status Solidi (B): Basic Research, 2006, 243, 1588-1593.	0.7	7

#	Article	IF	CITATIONS
127	Defect characterization and analysis of Illâ€V nanowires grown by Niâ€promoted MBE. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2589-2592.	0.8	7
128	Microstructure of Nâ€face InN grown on Si (111) by plasmaâ€assisted MBE using a thin GaN–AlN buffer layer. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1074-1078.	0.8	7
129	Reconstructions and electronic structure of (112Â ⁻ 2) and (112Â ⁻ 2Â ⁻) semipolar AlN surfaces. Journal of Applied Physics, 2012, 112, 033510.	1.1	7
130	Structure and strain state of polar and semipolar InGaN quantum dots. Applied Surface Science, 2012, 260, 7-12.	3.1	7
131	Effects of ultrathin AlN prelayers on the spontaneous growth of GaN nanowires by plasma assisted molecular beam epitaxy. Journal of Crystal Growth, 2019, 514, 89-97.	0.7	7
132	High-symmetry triple junctions in polycrystalline silicon. Journal of Applied Crystallography, 1991, 24, 232-238.	1.9	6
133	Interfacial dislocations in TiN/GaN thin films. Journal of Physics Condensed Matter, 2000, 12, 10295-10300.	0.7	6
134	Disconnections at translation domain boundaries in epitaxial GaN. Journal of Physics Condensed Matter, 2002, 14, 12709-12715.	0.7	6
135	Interfacial steps, dislocations, and inversion domain boundaries in the GaN/AlN/Si (0001)/(111) epitaxial system. Physica Status Solidi (B): Basic Research, 2005, 242, 1617-1627.	0.7	6
136	On the coordination environment of Fe- and Pb-rich solidified industrial waste: An X-ray absorption and MA¶ssbauer study. Journal of Non-Crystalline Solids, 2006, 352, 2933-2942.	1.5	6
137	Application of μ-XAFS for the determination of the crystallization ratio in a series of vitro-ceramic materials containing industrial waste. Nuclear Instruments & Methods in Physics Research B, 2006, 246, 238-243.	0.6	6
138	Atomic-scale configuration of catalyst particles on GaN nanowires. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3716-3719.	0.8	6
139	Electron microscopy investigation of extended defects in a-plane gallium nitride layers grown on r-plane sapphire by molecular beam epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3748-3751.	0.8	6
140	Strain accommodation and interfacial structure of AlN interlayers in GaN. Crystal Research and Technology, 2009, 44, 1170-1180.	0.6	6
141	Self-annihilation of inversion domains by high energy defects in III-Nitrides. Applied Physics Letters, 2014, 104, .	1.5	6
142	Nanostructure and strain properties of core-shell GaAs/AlGaAs nanowires. Semiconductor Science and Technology, 2015, 30, 114012.	1.0	6
143	Strain and elastic constants of GaN and InN. Computational Condensed Matter, 2017, 10, 25-30.	0.9	6
144	Stabilization of Cr-rich tannery waste in fly ash matrices. Waste Management and Research, 2018, 36,	2.2	6

818-826.

#	Article	IF	CITATIONS
145	Structural and electronic properties of <i>a</i> -edge dislocations along âŸ`1-100⟩ in GaN. Journal of Applied Physics, 2018, 123, .	1.1	6
146	Probing the structural role of Cr in stabilized tannery wastes with X-ray absorption fine structure spectroscopy. Journal of Hazardous Materials, 2021, 402, 123734.	6.5	6
147	Plasma-Assisted Molecular Beam Epitaxy of III-V Nitrides. , 2006, , 107-191.		5
148	InN quantum dots grown on GaN (0001) by molecular beam epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3983-3987.	0.8	5
149	Controlled growth of porous networks in phosphide semiconductors. Journal of Porous Materials, 2008, 15, 75-81.	1.3	5
150	Temperature dependent EXAFS of InN. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2611-2614.	0.8	5
151	Effect of composition on the bonding environment of In in InAlN and InGaN epilayers. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2593-2597.	0.8	5
152	Bare-Eye View at the Nanoscale: New Visual Interferometric Multi-Indicator (VIMI). ACS Applied Materials & Interfaces, 2010, 2, 3052-3058.	4.0	5
153	Atomistic modeling and HRTEM analysis of misfit dislocations in InN/GaN heterostructures. Applied Surface Science, 2012, 260, 23-28.	3.1	5
154	Si nanostructures grown by picosecond high repetition rate pulsed laser deposition. Applied Surface Science, 2013, 278, 67-70.	3.1	5
155	Structural and electronic properties of elastically strained InN/GaN quantum well multilayer heterostructures. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 289-292.	0.8	5
156	Energetic, structural and electronic properties of metal vacancies in strained AlN/GaN interfaces. Journal of Physics Condensed Matter, 2015, 27, 125006.	0.7	5
157	Nanocrystalline thin titanium films grown on potassium bromide single crystals. Thin Solid Films, 1998, 319, 140-143.	0.8	4
158	XAFS Studies on Vitrified Industrial Waste. Physica Scripta, 2005, , 931.	1.2	4
159	Disconnections and inversion domain formation in GaN/AlN heteroepitaxy on (111) silicon. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2500-2503.	0.8	4
160	Structural and optical characterisation of thick InN epilayers grown with a single or two step growth process on GaN(0001). Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 162-166.	0.8	4
161	Modification of the Fe-environment in Fe2O3 glass/glass ceramic systems containing Pb, Na and Si. Nuclear Instruments & Methods in Physics Research B, 2006, 246, 170-175.	0.6	4
162	Indium adsorption and incorporation mechanisms in AlN. Journal of Materials Science, 2011, 46, 4377-4383.	1.7	4

#	Article	IF	CITATIONS
163	Structural characterization of InN epilayers grown on r -plane sapphire by plasma-assisted MBE. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 534-537.	0.8	4
164	InGaN/GaN quantum dots as optical probes for the electric field at the GaN/electrolyte interface. Journal of Applied Physics, 2013, 114, 074313.	1.1	4
165	A study of the piezoelectric properties of semipolar 112ì2 GaN/AlN quantum dots. Physica Status Solidi (B): Basic Research, 2015, 252, 2296-2303.	0.7	4
166	Ab-initio electronic structure calculations and properties of [SixSn1â^'x]3N4 ternary nitrides. Thin Solid Films, 2016, 613, 43-47.	0.8	4
167	Stacking Fault Manifolds and Structural Configurations of Partial Dislocations in InGaN Epilayers. Physica Status Solidi (B): Basic Research, 2021, 258, 2100190.	0.7	4
168	Continuum and Atomistic Modeling of the Mixed Straight Dislocation. International Journal for Multiscale Computational Engineering, 2010, 8, 331-342.	0.8	4
169	On the formation of stacking faults in silicon implanted with high doses of oxygen. Journal of Materials Science, 1987, 22, 2515-2520.	1.7	3
170	HREM study of ultra-thin, amorphous carbon films and structural changes of carbon forms to diamond under ion bombardment. Diamond and Related Materials, 1999, 8, 688-692.	1.8	3
171	Magnesium adsorption and incorporation in InN (0001) and surfaces: A first-principles study. Applied Surface Science, 2009, 255, 8475-8482.	3.1	3
172	Energetics of oxygen adsorption and incorporation at InN polar surface: A first-principles study. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S364-S367.	0.8	3
173	Effect of doping on screw threading dislocations in AlN and their role as conductive nanowires. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 484-487.	0.8	3
174	Electron energy loss near edge structure of InxAl1â^'xN alloys. Microelectronic Engineering, 2013, 112, 198-203.	1.1	3
175	Atomic scale morphology, growth behaviour and electronic properties of semipolar \${ 1 Oar {1}3} \$ GaN surfaces. Journal of Physics Condensed Matter, 2013, 25, 045008.	0.7	3
176	Nanostructural and electronic properties of polytypes in InN nanocolumns. Journal of Applied Physics, 2013, 114, 074312.	1.1	3
177	Interfacial properties of self-assembled GaN nanowires on pre-processed Al2O3(0001) surfaces. Materials Science in Semiconductor Processing, 2016, 55, 46-50.	1.9	3
178	Strong suppression of In desorption from InGaN QW by improved technology of upper InGaN/GaN QW interface. Journal of Crystal Growth, 2019, 507, 310-315.	0.7	3
179	Large out-of-plane piezoelectric response of wurtzite InN under biaxial strain. Modelling and Simulation in Materials Science and Engineering, 2021, 29, 065013.	0.8	3
180	TOPOLOGY OF CRYSTALLITE JUNCTIONS IN EPITAXIAL SEMICONDUCTORS. Journal of the Mechanical Behavior of Materials, 1996, 7, 51-66.	0.7	2

#	Article	IF	CITATIONS
181	Structural Characteristics of Twin Boundaries in Deformed Polycrystalline Zirconium. Materials Science Forum, 1998, 294-296, 365-368.	0.3	2
182	Atomic simulations and HRTEM observations of a Σ 18 tilt grain boundary in GaN. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 799-803.	0.8	2
183	Interface controlled active fracture modes in glass-ceramics. Journal of Materials Science, 2008, 43, 3954-3959.	1.7	2
184	Micropore modification in InP. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2577-2580.	0.8	2
185	Microstructure of defects in InGaN/GaN quantum well heterostructures. Journal of Physics: Conference Series, 2008, 126, 012048.	0.3	2
186	Influence of defect characteristics on the nanoindentation response of <i>a</i> â€plane GaN thin films. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 213-217.	0.8	2
187	Structure and interfacial properties of semipolars-plane (1-101) InN grown onr-plane sapphire. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 199-203.	0.8	2
188	Structural and photoluminescent properties of low temperature InAs buffer layer grown by MOVPE on GaAs substrates. Journal of Crystal Growth, 2014, 396, 54-60.	0.7	2
189	Direct spontaneous growth and interfacial structural properties of inclined GaN nanopillars on <i>r</i> -plane sapphire. Journal of Applied Physics, 2015, 117, .	1.1	2
190	Ab Initio Study of the Electron–Phonon Coupling in Ultrathin Al Layers. Journal of Low Temperature Physics, 2021, 203, 180-193.	0.6	2
191	COINCIDENCE IN HEXAGONAL MATERIALS. Journal De Physique Colloque, 1990, 51, C1-61-C1-66.	0.2	2
192	Atomistic Simulation of Undissociated 60° ; Basal Dislocation in Wurtzite GaN Modeling and Numerical Simulation of Material Science, 2013, 03, 11-16.	0.5	2
193	Tem study of twin boundary dislocations in cadmium. Scripta Metallurgica, 1989, 23, 417-419.	1.2	1
194	A particular case of electronic behaviour of the Sigma =3 grain boundary in p-type Si. Semiconductor Science and Technology, 1991, 6, 607-611.	1.0	1
195	Hrem Study of Ultra Thin Titanium Films. Materials Research Society Symposia Proceedings, 1997, 472, 391.	0.1	1
196	Interfacial dislocations at the junction lines of {211} microfacets of a twin boundary in silicon. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1998, 78, 255-272.	0.7	1
197	Interaction Between Basal Stacking Faults and Prismatic Inversion Domain Boundaries in GaN. Materials Research Society Symposia Proceedings, 2000, 639, 3441.	0.1	1
198	Atomic structure and energy of junctions between inversion domain boundaries and stacking faults in wurtzite GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2464-2469.	0.8	1

#	Article	IF	CITATIONS
199	Topological Analysis of Defects in Nitride Semiconductors. , 2006, , 319-377.		1
200	The role of alkali content in the devitrification mechanisms of SiO2–Fe2O3–Na2O–PbO SYSTEM. Journal of Thermal Analysis and Calorimetry, 2006, 86, 715-719.	2.0	1
201	Fano effect in quasi-one-dimensional wires with short- or finite-range impurities. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3813-3817.	0.8	1
202	Study of interfacial defects induced during the oxidation of ultrathin strained silicon layers. Journal of Applied Physics, 2009, 105, 114503.	1.1	1
203	Crystallization process of thermally treated vitrified EAFD waste. Journal of the European Ceramic Society, 2010, 30, 2009-2015.	2.8	1
204	Structural and electronic properties of InGaN/GaN nanowires by the use of EELS. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 105-108.	0.8	1
205	Lattice-Mismatched Epitaxial Growth On Porous III-V Substrates. ECS Transactions, 2013, 58, 53-60.	0.3	1
206	Thermal oxidation and facetâ€formation mechanisms of Si nanowires. Physica Status Solidi - Rapid Research Letters, 2014, 8, 307-311.	1.2	1
207	Investigation of magnetic coupling in FePt/spacer/FePt trilayers. Journal Physics D: Applied Physics, 2017, 50, 445002.	1.3	1
208	HRTEM study of microstructure-coercivity relationship in perpendicular Co25Pd75 thin films. Journal of Magnetism and Magnetic Materials, 2021, 529, 167816.	1.0	1
209	The Metalorganic Vapour Phase Epitaxy Growth of AllIBVHeterostructures Observed by Reflection Anisotropy Spectroscopy. Acta Physica Polonica A, 2016, 129, A-75-A-78.	0.2	1
210	The Microstructure and Electrical Properties of Directly Deposited TiN Ohmic Contacts to Gallium Nitride Materials Research Society Symposia Proceedings, 1999, 595, 1.	0.1	0
211	Structural properties of InN thin films grown with variable growth conditions on GaN/Al2O3 by plasma-assisted MBE. Springer Proceedings in Physics, 2005, , 71-74.	0.1	0
212	Structural properties of quaternary InAlGaN MQW grown by plasma-assisted MBE. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2151-2155.	0.8	0
213	Preface: phys. stat. sol (a) 203/9. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2149-2149.	0.8	0
214	Oxidation of very low energy nitrogen-implanted strained-silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 135, 199-202.	1.7	0
215	Crystallization of amorphous silicon thin films: comparison between experimental and computer simulation results. Journal of Materials Science, 2008, 43, 3976-3981.	1.7	0
216	Structural properties of ultrathin InGaN/GaN quantum wells. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2556-2559.	0.8	0

#	Article	IF	CITATIONS
217	Effects of Stress-relieving AlN Interlayers in GaN-on-Si Grown by Plasma-assisted Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 2008, 1068, 1.	0.1	Ο
218	Nonlinear Finite Element and Atomistic Modelling of Dislocations in Heterostructures. Advanced Structured Materials, 2010, , 239-253.	0.3	0
219	Influence of thermal oxidation on the interfacial properties of ultrathin strained silicon layers. Thin Solid Films, 2011, 519, 5456-5463.	0.8	0
220	Effects of intrasubband coupling on the scattering phases and density of states in a quantum wire. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 3337-3341.	0.9	0
221	Detection of hydrogen at room temperature with graphite-Pt nanoparticles/Si Schottky diodes. , 2013, , ·		0
222	Extended Defects in Semiconductors. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 7-9.	0.8	0
223	Different polarities of InN (0001) heterostructures on Si (111) substrates. , 2014, , .		Ο
224	On the applicability of elastic model to very thin crystalline layers. Journal of Physics: Conference Series, 2019, 1190, 012017.	0.3	0
225	Electron Microscopy Studies of Defects in Deformed Hexagonal Materials. , 2000, , 215-226.		Ο
226	MICROHARDNESS CHARACTERIZATION OF EPITAXIALLY GROWN GaN FILMS: EFFECT OF LIGHT ION IMPLANTATION. , 2001, , .		0
227	MATERIAL PROPERTIES OF GaN FILMS WITH Ga - OR N - FACE POLARITY GROWN BY MBE ON Al ₂ O ₃ (0001) SUBSTRATES UNDER DIFFERENT GROWTH CONDITIONS. , 2001, , .		Ο
228	What does an (a+c) dislocation core look like in wurtzite GaN ?. Materials Research Society Symposia Proceedings, 2005, 892, 608.	0.1	0
229	Misfit analysis of the InN/GaN interface through HRTEM image simulations. , 2008, , 651-652.		Ο
230	Stacking Fault Manifolds and Structural Configurations of Partial Dislocations in InGaN Epilayers. Physica Status Solidi (B): Basic Research, 2021, 258, 2170053.	0.7	0
231	Demonstration of Enhanced Switching Variability and Conductance Quantization Properties in a SiO ₂ Conducting Bridge Resistive Memory with Embedded Two-Dimensional MoS ₂ Material ACS Applied Electronic Materials, 2022, 4, 2869-2878	2.0	Ο