Matthew A Marx

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8306772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of MRTX1133, a Noncovalent, Potent, and Selective KRAS ^{G12D} Inhibitor. Journal of Medicinal Chemistry, 2022, 65, 3123-3133.	6.4	243
2	Design and Discovery of MRTX0902, a Potent, Selective, Brain-Penetrant, and Orally Bioavailable Inhibitor of the SOS1:KRAS Protein–Protein Interaction. Journal of Medicinal Chemistry, 2022, 65, 9678-9690.	6.4	29
3	The KRASG12C Inhibitor MRTX849 Provides Insight toward Therapeutic Susceptibility of KRAS-Mutant Cancers in Mouse Models and Patients. Cancer Discovery, 2020, 10, 54-71.	9.4	820
4	Identification of the Clinical Development Candidate MRTX849 , a Covalent KRAS ^{G12C} Inhibitor for the Treatment of Cancer. Journal of Medicinal Chemistry, 2020, 63, 6679-6693.	6.4	300
5	Abstract LB-098: The anti-tumor activity of the KRAS G12C inhibitor MRTX849 is augmented by cetuximab in CRC tumor models. , 2020, , .		0
6	Discovery of Tetrahydropyridopyrimidines as Irreversible Covalent Inhibitors of KRAS-G12C with In Vivo Activity. ACS Medicinal Chemistry Letters, 2018, 9, 1230-1234.	2.8	65
7	Mitotic Checkpoint Kinase Mps1 Has a Role in Normal Physiology which Impacts Clinical Utility. PLoS ONE, 2015, 10, e0138616.	2.5	30
8	Discovery of the Highly Potent PI3K/mTOR Dual Inhibitor PF-04979064 through Structure-Based Drug Design. ACS Medicinal Chemistry Letters, 2013, 4, 91-97.	2.8	54
9	Discovery and synthesis of novel 4-aminopyrrolopyrimidine Tie-2 kinase inhibitors for the treatment of solid tumors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3059-3063.	2.2	10
10	Discovery of Novel, Potent, and Selective Inhibitors of 3-Phosphoinositide-Dependent Kinase (PDK1). Journal of Medicinal Chemistry, 2011, 54, 8490-8500.	6.4	30
11	Highly Selective and Potent Thiophenes as PI3K Inhibitors with Oral Antitumor Activity. ACS Medicinal Chemistry Letters, 2011, 2, 809-813.	2.8	29
12	4-Methylpteridinones as orally active and selective PI3K/mTOR dual inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6096-6099.	2.2	31
13	Design of Selective, ATP-Competitive Inhibitors of Akt. Journal of Medicinal Chemistry, 2010, 53, 4615-4622.	6.4	64
14	Discovery of the highly potent PI3K/mTOR dual inhibitor PF-04691502 through structure based drug design. MedChemComm, 2010, 1, 139.	3.4	68
15	2-Morpholino-4-oxo-4,5-dihydrothiophene-3-carbonitrile. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2765-o2765.	0.2	1
16	Design and SAR of thienopyrimidine and thienopyridine inhibitors of VEGFR-2 kinase activity. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 21-24.	2.2	91
17	Total synthesis of (+)-ambruticin S. Tetrahedron, 2003, 59, 6819-6832.	1.9	56
18	Small-molecule, tubulin-binding compounds as vascular targeting agents. Expert Opinion on Therapeutic Patents, 2002, 12, 769-776.	5.0	21

MATTHEW A MARX

#	Article	IF	CITATIONS
19	Total Synthesis of (+)-Ambruticin S. Journal of the American Chemical Society, 2001, 123, 12432-12433.	13.7	70
20	Synthetic Design for Combinatorial Chemistry. Solution and Polymer-Supported Synthesis of Polycyclic Lactams by Intramolecular Cyclization of Azomethine Ylides. Journal of the American Chemical Society, 1997, 119, 6153-6167.	13.7	83
21	Divergence between the enzyme-catalyzed and noncatalyzed synthesis of 3-dehydroquinate. Journal of Organic Chemistry, 1994, 59, 2082-2085.	3.2	22