
Jian-Qiang Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8306746/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced field emission properties of CsPbBr3 films by thermal annealing and surface functionalization with boron nitride. Applied Surface Science, 2022, 578, 152116.	3.1	6
2	CsPbBr ₃ microarrays with tunable periodicity, optoelectronic and field emission properties using self-assembled polystyrene template and co-evaporation method. Physical Chemistry Chemical Physics, 2022, 24, 13210-13216.	1.3	1
3	Crystalline structures and optoelectronic properties of orthorhombic CsPbBr3 polycrystalline films grown by the Co-evaporation method. Vacuum, 2022, 202, 111219.	1.6	4
4	Structural Evolution of Ga–Cu Model Catalysts for CO ₂ Hydrogenation Reactions. Journal of Physical Chemistry C, 2021, 125, 1361-1367.	1.5	11
5	Interaction of Hydrogen with Ceria: Hydroxylation, Reduction, and Hydride Formation on the Surface and in the Bulk. Chemistry - A European Journal, 2021, 27, 5268-5276.	1.7	44
6	Operando high-pressure investigation of size-controlled CuZn catalysts for the methanol synthesis reaction. Nature Communications, 2021, 12, 1435.	5.8	62
7	Work function modulation of graphene with binary mixture of Cu and C60F36. Carbon, 2021, 179, 172-179.	5.4	8
8	Pressure-dependent band-bending in ZnO: A near-ambient-pressure X-ray photoelectron spectroscopy study. Journal of Energy Chemistry, 2021, 60, 25-31.	7.1	3
9	Multi-modal surface analysis of porous films under <i>operando</i> conditions. AIP Advances, 2020, 10, .	0.6	19
10	Single-molecule imaging of dinitrogen molecule adsorption on individual iron phthalocyanine. Nano Research, 2020, 13, 2393-2398.	5.8	3
11	Wasserunterstützte homolytische Dissoziation von Propin auf reduzierter CeroxidoberflÜhe. Angewandte Chemie, 2020, 132, 6206-6211.	1.6	1
12	Waterâ€Assisted Homolytic Dissociation of Propyne on a Reduced Ceria Surface. Angewandte Chemie - International Edition, 2020, 59, 6150-6154.	7.2	14
13	Isolating the Roles of Hydrogen Exposure and Trace Carbon Contamination on the Formation of Active Catalyst Populations for Carbon Nanotube Growth. ACS Nano, 2019, 13, 8736-8748.	7.3	28
14	Morphology of Palladium Thin Film Deposited on a Two-Dimensional Bilayer Aluminosilicate. Topics in Catalysis, 2019, 62, 1067-1075.	1.3	3
15	2Dâ€(Alumino)Silicateâ€Noble Clathrates: Ionizationâ€Facilitated Formation of 2D (Alumino)Silicate–Noble Gas Clathrate Compounds (Adv. Funct. Mater. 20/2019). Advanced Functional Materials, 2019, 29, 1970137.	7.8	0
16	Room-Temperature in Vacuo Chemisorption of Xenon Atoms on Ru(0001) under Interface Confinement. Journal of Physical Chemistry C, 2019, 123, 13578-13585.	1.5	5
17	Ionizationâ€Facilitated Formation of 2D (Alumino)Silicate–Noble Gas Clathrate Compounds. Advanced Functional Materials, 2019, 29, 1806583.	7.8	20
18	First-Principles Study of Interface Structures and Charge Rearrangement at the Aluminosilicate/Ru(0001) Heterojunction. Journal of Physical Chemistry C, 2019, 123, 7731-7739.	1.5	11

JIAN-QIANG ZHONG

#	Article	IF	CITATIONS
19	Stabilization of Oxidized Copper Nanoclusters in Confined Spaces. Topics in Catalysis, 2018, 61, 419-427.	1.3	13
20	Synchrotron-based ambient pressure X-ray photoelectron spectroscopy of hydrogen and helium. Applied Physics Letters, 2018, 112, .	1.5	13
21	Probing the effect of the Pt–Ni–Pt(111) bimetallic surface electronic structures on the ammonia decomposition reaction. Nanoscale, 2017, 9, 666-672.	2.8	22
22	Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems. Nature Communications, 2017, 8, 16118.	5.8	29
23	Reactive Intermediates or Inert Graphene? Temperature- and Pressure-Determined Evolution of Carbon in the CH ₄ –Ni(111) System. ACS Catalysis, 2017, 7, 6028-6037.	5.5	15
24	Energy Level Shifts at the Silica/Ru(0001) Heterojunction Driven by Surface and Interface Dipoles. Topics in Catalysis, 2017, 60, 481-491.	1.3	32
25	Studying two-dimensional zeolites with the tools of surface science: MFI nanosheets on Au(111). Catalysis Today, 2017, 280, 283-288.	2.2	11
26	Oxidation and Reduction under Cover: Chemistry at the Confined Space between Ultrathin Nanoporous Silicates and Ru(0001). Journal of Physical Chemistry C, 2016, 120, 8240-8245.	1.5	44
27	Dynamic Oxygen on Surface: Catalytic Intermediate and Coking Barrier in the Modeled CO ₂ Reforming of CH ₄ on Ni (111). ACS Catalysis, 2016, 6, 4330-4339.	5.5	93
28	Tuning the electronic properties of ZnO nanowire field effect transistors via surface functionalization. Nanotechnology, 2015, 26, 095202.	1.3	12
29	Rational design of two-dimensional molecular donor–acceptor nanostructure arrays. Nanoscale, 2015, 7, 4306-4324.	2.8	26
30	Towards single molecule switches. Chemical Society Reviews, 2015, 44, 2998-3022.	18.7	306
31	Single-Molecule Imaging of Activated Nitrogen Adsorption on Individual Manganese Phthalocyanine. Nano Letters, 2015, 15, 3181-3188.	4.5	22
32	Molecular orientation and electronic structure at organic heterojunction interfaces. Journal of Electron Spectroscopy and Related Phenomena, 2015, 204, 12-22.	0.8	12
33	Reversible Tuning of Interfacial and Intramolecular Charge Transfer in Individual MnPc Molecules. Nano Letters, 2015, 15, 8091-8098.	4.5	12
34	High performance vertical tunneling diodes using graphene/hexagonal boron nitride/graphene hetero-structure. Applied Physics Letters, 2014, 104, 053103.	1.5	35
35	Bandgap Control of the Oxygenâ€Vacancyâ€Induced Twoâ€Dimensional Electron Gas in SrTiO ₃ . Advanced Materials Interfaces, 2014, 1, 1400155.	1.9	27
36	Energy Level Realignment in Weakly Interacting Donor–Acceptor Binary Molecular Networks. ACS Nano, 2014, 8, 1699-1707.	7.3	35

JIAN-QIANG ZHONG

#	Article	IF	CITATIONS
37	Molecular Orientation and Site Dependent Charge Transfer Dynamics at PTCDA/TiO ₂ (110) Interface Revealed by Resonant Photoemission Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 4160-4166.	1.5	28
38	Mildly O2 plasma treated CVD graphene as a promising platform for molecular sensing. Carbon, 2014, 76, 212-219.	5.4	39
39	Modulating electronic transport properties of MoS2 field effect transistor by surface overlayers. Applied Physics Letters, 2013, 103, .	1.5	88
40	A high work function anode interfacial layer via mild temperature thermal decomposition of a C60F36 thin film on ITO. Journal of Materials Chemistry C, 2013, 1, 1491.	2.7	11
41	Tuning the Dirac Point in CVD-Grown Graphene through Solution Processed n-Type Doping with 2-(2-Methoxyphenyl)-1,3-dimethyl-2,3-dihydro-1 <i>H</i> -benzoimidazole. Nano Letters, 2013, 13, 1890-1897.	4.5	129
42	Modification of PTCDA/Co Interfacial Electronic Structures Using Alq ₃ Buffer Layer. Journal of Physical Chemistry C, 2013, 117, 25636-25642.	1.5	9
43	Low-temperature scanning tunneling microscopy/ultraviolet photoelectron spectroscopy investigation of two-dimensional crystallization of C60: pentacence binary system on Ag(111). Journal of Applied Physics, 2012, 111, 034304.	1.1	3
44	lonization potential dependent air exposure effect on the MoO3/organic interface energy level alignment. Organic Electronics, 2012, 13, 2793-2800.	1.4	43
45	Investigation of Interface Properties for ClAlPc/C ₆₀ Heterojunction-Based Inverted Organic Solar Cell. Journal of Physical Chemistry C, 2012, 116, 2521-2526.	1.5	25
46	The role of gap states in the energy level alignment at the organic–organic heterojunction interfaces. Physical Chemistry Chemical Physics, 2012, 14, 14127.	1.3	47
47	CVD Graphene as Interfacial Layer to Engineer the Organic Donor–Acceptor Heterojunction Interface Properties. ACS Applied Materials & Interfaces, 2012, 4, 3134-3140.	4.0	30
48	Preparation of Supercapacitor Electrodes through Selection of Graphene Surface Functionalities. ACS Nano, 2012, 6, 5941-5951.	7.3	310
49	Effect of Gap States on the Orientation-Dependent Energy Level Alignment at the DIP/F ₁₆ CuPc Donor–Acceptor Heterojunction Interfaces. Journal of Physical Chemistry C, 2011, 115, 23922-23928.	1.5	40
50	Electronic Structure, Chemical Interactions and Molecular Orientations of 3,4,9,10-Perylene-tetracarboxylic-dianhydride on TiO ₂ (110). Journal of Physical Chemistry C, 2011, 115, 24880-24887.	1.5	50
51	Molecular-scale investigation of C60/ <i>p</i> -sexiphenyl organic heterojunction interface. Journal of Chemical Physics, 2011, 134, 154706.	1.2	26
52	Chemical vapor deposition graphene as structural template to control interfacial molecular orientation of chloroaluminium phthalocyanine. Applied Physics Letters, 2011, 99, 093301.	1.5	29
53	Two-Dimensional Ultrathin Silica Films. Chemical Reviews, 0, , .	23.0	9