Sergey P Shilkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8306042/publications.pdf

Version: 2024-02-01

56 papers	305 citations	9 h-index	996975 15 g-index
56	56	56	264
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Investigation of interactions in the TiH2-O2 system. International Journal of Hydrogen Energy, 1995, 20, 387-389.	7.1	33
2	Oxidation behavior of TiB2 micro- and nanoparticles. Inorganic Materials, 2016, 52, 686-693.	0.8	24
3	Synthesis of nano-sized titanium diboride in a melt of anhydrous sodium tetraborate. Russian Journal of General Chemistry, 2012, 82, 819-821.	0.8	18
4	Corrosion resistance of nanostructured films of titanium diboride in mineral acid solutions. Protection of Metals and Physical Chemistry of Surfaces, 2016, 52, 618-621.	1.1	18
5	Hydrogen absorption and electrocatalytic properties of ultrafine LaNi5 powders. International Journal of Hydrogen Energy, 1996, 21, 949-954.	7.1	16
6	Synthesis of the tetragonal titanium dihydride inultradispersed state. International Journal of Hydrogen Energy, 1999, 24, 111-114.	7.1	16
7	Nanosized zirconium diboride: Synthesis and properties. Russian Journal of Inorganic Chemistry, 2011, 56, 506-509.	1.3	16
8	Study of the phase-forming features in the ZrH2\$z.sbnd;O2 system. International Journal of Hydrogen Energy, 1996, 21, 969-973.	7.1	9
9	Synthesis of nanosized group IV borides in ionic melts of anhydrous sodium tetraborate. Russian Journal of Inorganic Chemistry, 2016, 61, 429-433.	1.3	9
10	Thermal Expansion of Micro- and Nanocrystalline HfB2. High Temperature, 2019, 57, 32-36.	1.0	9
11	Formation of zirconium diboride nanoparticles as a result of reaction between zirconium tetrachloride and sodium borohydride. Inorganic Materials, 2017, 53, 804-808.	0.8	8
12	Preparation of titanium diboride nanopowder. Inorganic Materials, 2010, 46, 614-616.	0.8	7
13	Preparation of titanium diboride nanopowders of different particle sizes. Inorganic Materials, 2013, 49, 1086-1090.	0.8	7
14	Special features of preparation of nanosized zirconium diboride powders of various dispersity. Russian Journal of General Chemistry, 2017, 87, 906-911.	0.8	7
15	Structure and vibrational spectra of aluminum borohydride monoammine. Journal of Structural Chemistry, 1975, 16, 66-72.	1.0	6
16	Synthesis of Mg2Cu and MgCu2 nanoparticles in a KCl-NaCl-MgCl2 melt. Inorganic Materials, 2012, 48, 1078-1081.	0.8	6
17	Activation of metallic aluminum by tin and gallium chlorides in oxidation with water. Inorganic Materials, 2012, 48, 238-243.	0.8	6
18	Title is missing!. Russian Journal of Applied Chemistry, 2003, 76, 1008-1010.	0.5	5

#	Article	IF	CITATIONS
19	Preparation of zirconium diboride nanopowders in a sodium tetraborate ionic melt. Inorganic Materials, 2013, 49, 1187-1189.	0.8	5
20	Synthesis of Niobium Diboride Nanoparticles by the Reaction of Amorphous Boron with Niobium in KCl and Na2B4O7 Ionic Melts. Russian Journal of General Chemistry, 2021, 91, 302-304.	0.8	5
21	Synthesis and structure of ammines of beryllium and magnesium borohydrides. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1975, 24, 661-663.	0.0	4
22	Oxidation of Metal Hydrides with Molecular Oxygen. Russian Journal of General Chemistry, 2004, 74, 489-494.	0.8	4
23	Electron work function of intermetallic compounds in the cerium-cobalt system. Technical Physics, 2011, 56, 1216-1218.	0.7	4
24	Special features of preparation of nanosized hafnium diboride of different dispersity. Russian Journal of General Chemistry, 2015, 85, 1019-1024.	0.8	4
25	Preparation of hafnium diboride nanopowders in an anhydrous Na2B4O7 ionic melt. Inorganic Materials, 2015, 51, 380-383.	0.8	4
26	Nanosized Vanadium Diboride: Synthesis, Structure, and Properties. Russian Journal of General Chemistry, 2019, 89, 641-646.	0.8	4
27	High-Temperature X-ray Diffraction Study of the Thermal Expansion and Stability of Nanocrystalline VB2. Inorganic Materials, 2019, 55, 1111-1117.	0.8	4
28	Synthesis of Vanadium Diboride Nanoparticles via Reaction of VCl3 with NaBH4. Inorganic Materials, 2020, 56, 126-131.	0.8	4
29	Synthesis and Thermal Oxidation Stability of Nanocrystalline Niobium Diboride. Inorganic Materials, 2021, 57, 1005-1014.	0.8	4
30	Hydrides ScFe(Ni)2Hx: preparation and properties. International Journal of Hydrogen Energy, 2001, 26, 449-452.	7.1	3
31	Synthesis of Zirconium Diboride Nanoparticles by the Reaction of ZrCl4 with NaBH4 in an Ionic Potassium Bromide Melt. Russian Journal of General Chemistry, 2018, 88, 1757-1758.	0.8	3
32	Synthesis of Vanadium Diboride Nanoparticles via Reaction of Amorphous Boron with Vanadium in KCl and Na2B4O7 Ionic Melts. Inorganic Materials, 2019, 55, 443-448.	0.8	3
33	Thermal Expansion of Micro- and Nanocrystalline ZrB2 Powders. Inorganic Materials, 2020, 56, 258-264.	0.8	3
34	Vibrational spectra and structure of the Di- and tetraammoniate of aluminum borohydride. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1978, 27, 859-864.	0.0	2
35	Reaction of Lanthanum Carbonates with Nickel in Aqueous Medium. Russian Journal of General Chemistry, 2003, 73, 1331-1334.	0.8	2
36	Reaction of the Intermetallic Compound SmFe11Ti with Gaseous Ammonia. Russian Journal of General Chemistry, 2005, 75, 831-834.	0.8	2

#	Article	IF	CITATIONS
37	Electron work function of LaNi5 \hat{a} ' x T x (T = Al, Cu, Fe; x = 0, 1) intermetallics. Technical Physics, 2012, 57, 1266-1269.	0.7	2
38	Synthesis of Mg2Ni nanoparticles in a KCl-NaCl-MgCl2 melt. Inorganic Materials, 2012, 48, 138-141.	0.8	2
39	Behavior of titanium diboride nanofilms and nanopowders in hydrochloric acid solutions. Inorganic Materials, 2017, 53, 548-551.	0.8	2
40	X-Ray Photoelectron Spectra of TbB66. Inorganic Materials, 2018, 54, 45-48.	0.8	2
41	Oxidation Behavior of Zirconium Diboride Nanoparticles. Inorganic Materials, 2018, 54, 550-557.	0.8	2
42	Preparation of ZrB2 by Reacting ZrCl4 with NaBH4 in Molten Potassium Bromide. Inorganic Materials, 2019, 55, 458-461.	0.8	2
43	Synthesis, Structure, and Properties of Titanium Diboride Nanoparticles. Inorganic Materials, 2020, 56, 1127-1132.	0.8	2
44	Synthesis of Titanium Diboride Nanoparticles via the Reaction of TiCl4 with NaBH4 in NaClâ€'KCl Ionic Melt. Russian Journal of General Chemistry, 2020, 90, 924-926.	0.8	2
45	Reaction of Hydride Phases of Zirconium Intermetallic Compounds with Molecular Nitrogen. Russian Journal of General Chemistry, 2002, 72, 1167-1169.	0.8	1
46	Chemical Interaction between Sm2Fe17and Ammonia. Inorganic Materials, 2004, 40, 497-501.	0.8	1
47	Reactions in AB5-NH3 systems. Russian Journal of General Chemistry, 2004, 74, 1641-1645.	0.8	1
48	Hydriding behavior of spherical particles of a titanium-aluminum-tin alloy. Inorganic Materials, 2006, 42, 261-263.	0.8	1
49	Special Features of Oxidation of Hafnium Diboride Nanoparticles of Different Dispersity. Russian Journal of General Chemistry, 2018, 88, 851-854.	0.8	1
50	Reaction of Zirconium and Its Dihydride with Ammonia. Russian Journal of General Chemistry, 2001, 71, 155-158.	0.8	0
51	Chemical and Phase Transformations in the Systems Hydrogen-Sorbing Intermetallic Compound-Diborane. Russian Journal of General Chemistry, 2003, 73, 865-867.	0.8	0
52	Phase and chemical transformations of lanthanum and iron alloys in a nitrogen-hydrogen medium. Russian Journal of General Chemistry, 2004, 74, 1147-1149.	0.8	0
53	Interaction between samarium and cobalt carbonates in aqueous medium. Russian Journal of Inorganic Chemistry, 2010, 55, 23-26.	1.3	0
54	Phase transformations of pseudo-alloys of tungsten with titanium in hydrogen atmosphere. Russian Journal of General Chemistry, 2011, 81, 1761-1764.	0.8	0

#	Article	IF	CITATIONS
55	Electron work function in YNi3 \hat{a}^{*} x T x (T = Cu, Fe, Mn; x = 0, 0.5) intermetallics. Technical Physics, 2014, 59, 613-615.	0.7	0
56	ABOUT INTERACTION OF HYDROGEN WITH SPHERICAL PARTICLES OF BT 5-1 TYPE ALLOY., 2007,, 321-324.		0