
Michael J Wolfgang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8306001/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of maternal–fetal metabolic communication. Cellular and Molecular Life Sciences, 2021, 78, 1455-1486.	5.4	38
2	Reducing Fatty Acid Oxidation Improves Cancer-free Survival in a Mouse Model of Li-Fraumeni Syndrome. Cancer Prevention Research, 2021, 14, 31-40.	1.5	3
3	The mitochondrial carrier SFXN1 is critical for complex III integrity and cellular metabolism. Cell Reports, 2021, 34, 108869.	6.4	30
4	Regulation of hepatic transcriptional architecture by Pparl \pm and fatty acid oxidation. FASEB Journal, 2021, 35, .	0.5	0
5	mTORC1 activation is not sufficient to suppress hepatic PPARα signaling or ketogenesis. Journal of Biological Chemistry, 2021, 297, 100884.	3.4	9
6	The role of ethanolamine phosphate phospholyase in regulation of astrocyte lipid homeostasis. Journal of Biological Chemistry, 2021, 297, 100830.	3.4	12
7	Discordant hepatic fatty acid oxidation and triglyceride hydrolysis leads to liver disease. JCI Insight, 2021, 6, .	5.0	26
8	Functional loss of ketogenesis in odontocete cetaceans. Journal of Experimental Biology, 2021, 224, .	1.7	3
9	Progesterone receptor membrane component 1 (PGRMC1) binds and stabilizes cytochromes P450 through a heme-independent mechanism. Journal of Biological Chemistry, 2021, 297, 101316.	3.4	22
10	Deletion of translin (Tsn) induces robust adiposity and hepatic steatosis without impairing glucose tolerance. International Journal of Obesity, 2020, 44, 254-266.	3.4	7
11	TATA-Box Binding Protein O-GlcNAcylation at T114 Regulates Formation of the B-TFIID Complex and Is Critical for Metabolic Gene Regulation. Molecular Cell, 2020, 77, 1143-1152.e7.	9.7	33
12	Serum lipoprotein–derived fatty acids regulate hypoxia-inducible factor. Journal of Biological Chemistry, 2020, 295, 18284-18300.	3.4	7
13	Determining the Bioenergetic Capacity for Fatty Acid Oxidation in the Mammalian Nervous System. Molecular and Cellular Biology, 2020, 40, .	2.3	18
14	Local and systemic actions of hepatic fatty acid oxidation. FASEB Journal, 2020, 34, 1-1.	0.5	0
15	Maternal Lipid Metabolism Directs Fetal Liver Programming following Nutrient Stress. Cell Reports, 2019, 29, 1299-1310.e3.	6.4	14
16	Loss of ACOT7 potentiates seizures and metabolic dysfunction. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E941-E951.	3.5	4
17	Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science, 2019, 364, 184-188.	12.6	252
18	Lrp4 expression by adipocytes and osteoblasts differentially impacts sclerostin's endocrine effects on body composition and glucose metabolism. Journal of Biological Chemistry, 2019, 294, 6899-6911.	3.4	39

MICHAEL J WOLFGANG

#	Article	IF	CITATIONS
19	Role of the malonyl-CoA synthetase ACSF3 in mitochondrial metabolism. Advances in Biological Regulation, 2019, 71, 34-40.	2.3	37
20	Macrophage fatty acid oxidation inhibits atherosclerosis progression. Journal of Molecular and Cellular Cardiology, 2019, 127, 270-276.	1.9	35
21	A Metabolic Basis for Endothelial-to-Mesenchymal Transition. Molecular Cell, 2018, 69, 689-698.e7.	9.7	164
22	β-Catenin Directs Long-Chain Fatty Acid Catabolism in the Osteoblasts of Male Mice. Endocrinology, 2018, 159, 272-284.	2.8	34
23	Fatty acid metabolism by the osteoblast. Bone, 2018, 115, 8-14.	2.9	54
24	Fatty acid oxidation is required for active and quiescent brown adipose tissue maintenance and thermogenic programing. Molecular Metabolism, 2018, 7, 45-56.	6.5	88
25	Copper-dependent amino oxidase 3 governs selection of metabolic fuels in adipocytes. PLoS Biology, 2018, 16, e2006519.	5.6	48
26	Etomoxir Inhibits Macrophage Polarization by Disrupting CoA Homeostasis. Cell Metabolism, 2018, 28, 490-503.e7.	16.2	242
27	Inflammatory stimuli induce acyl-CoA thioesterase 7 and remodeling of phospholipids containing unsaturated long (≥C20)-acyl chains in macrophages. Journal of Lipid Research, 2017, 58, 1174-1185.	4.2	21
28	The Mammalian Malonyl-CoA Synthetase ACSF3 Is Required for Mitochondrial Protein Malonylation and Metabolic Efficiency. Cell Chemical Biology, 2017, 24, 673-684.e4.	5.2	65
29	Developmental regulation and localization of carnitine palmitoyltransferases (<scp>CPT</scp> s) in rat brain. Journal of Neurochemistry, 2017, 142, 407-419.	3.9	68
30	Loss of macrophage fatty acid oxidation does not potentiate systemic metabolic dysfunction. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E381-E393.	3.5	28
31	Loss of Hepatic Mitochondrial Long-Chain Fatty Acid Oxidation Confers Resistance to Diet-Induced Obesity and Glucose Intolerance. Cell Reports, 2017, 20, 655-667.	6.4	62
32	Sclerostin influences body composition by regulating catabolic and anabolic metabolism in adipocytes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11238-E11247.	7.1	125
33	Fatty acid oxidation by the osteoblast is required for normal bone acquisition in a sex- and diet-dependent manner. JCI Insight, 2017, 2, .	5.0	84
34	Mitochondrial Pyruvate Import Promotes Long-Term Survival of Antibody-Secreting Plasma Cells. Immunity, 2016, 45, 60-73.	14.3	212
35	Loss of CTRP5 improves insulin action and hepatic steatosis. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E1036-E1052.	3.5	33
36	Requirement for the Mitochondrial Pyruvate Carrier in Mammalian Development Revealed by a Hypomorphic Allelic Series. Molecular and Cellular Biology, 2016, 36, 2089-2104.	2.3	47

MICHAEL J WOLFGANG

#	Article	IF	CITATIONS
37	Glucose Transporter-4 Facilitates Insulin-Stimulated Glucose Uptake in Osteoblasts. Endocrinology, 2016, 157, 4094-4103.	2.8	67
38	Loss of Adipose Fatty Acid Oxidation Does Not Potentiate Obesity at Thermoneutrality. Cell Reports, 2016, 14, 1308-1316.	6.4	39
39	Hepatic Fatty Acid Oxidation Restrains Systemic Catabolism during Starvation. Cell Reports, 2016, 16, 201-212.	6.4	91
40	Fatty acid oxidation in macrophage polarization. Nature Immunology, 2016, 17, 216-217.	14.5	276
41	Neurometabolic roles of ApoE and Ldl-R in mouse brain. Journal of Bioenergetics and Biomembranes, 2016, 48, 13-21.	2.3	9
42	Sphingosine 1-Phosphate Activation of EGFR As a Novel Target for Meningitic Escherichia coli Penetration of the Blood-Brain Barrier. PLoS Pathogens, 2016, 12, e1005926.	4.7	41
43	Metabolic and Tissue-Specific Regulation of Acyl-CoA Metabolism. PLoS ONE, 2015, 10, e0116587.	2.5	80
44	Wnt-Lrp5 Signaling Regulates Fatty Acid Metabolism in the Osteoblast. Molecular and Cellular Biology, 2015, 35, 1979-1991.	2.3	115
45	Adipose Fatty Acid Oxidation Is Required for Thermogenesis and Potentiates Oxidative Stress-Induced Inflammation. Cell Reports, 2015, 10, 266-279.	6.4	169
46	Preventing Allograft Rejection by Targeting Immune Metabolism. Cell Reports, 2015, 13, 760-770.	6.4	156
47	Chemical-genetic induction of Malonyl-CoA decarboxylase in skeletal muscle. BMC Biochemistry, 2014, 15, 20.	4.4	8
48	Acyl Coenzyme A Thioesterase 7 Regulates Neuronal Fatty Acid Metabolism To Prevent Neurotoxicity. Molecular and Cellular Biology, 2013, 33, 1869-1882.	2.3	69
49	A Genetically Encoded Metabolite Sensor for Malonyl-CoA. Chemistry and Biology, 2012, 19, 1333-1339.	6.0	51
50	C1q/TNF-related Protein-12 (CTRP12), a Novel Adipokine That Improves Insulin Sensitivity and Glycemic Control in Mouse Models of Obesity and Diabetes. Journal of Biological Chemistry, 2012, 287, 10301-10315.	3.4	128
51	Metabolomic profiling reveals a role for CPT1c in neuronal oxidative metabolism. BMC Biochemistry, 2012, 13, 23.	4.4	54
52	Targeted Chemical-Genetic Regulation of Protein Stability InÂVivo. Chemistry and Biology, 2012, 19, 391-398.	6.0	18
53	Hypothalamic malonyl-CoA and CPT1c in the treatment of obesity. FEBS Journal, 2011, 278, 552-558.	4.7	55
54	Carnitine palmitoyltransferaseâ€1c gainâ€ofâ€function in the brain results in postnatal microencephaly. Journal of Neurochemistry, 2011, 118, 388-398.	3.9	28

MICHAEL J WOLFGANG

#	Article	IF	CITATIONS
55	Brainâ€specific carnitine palmitoylâ€transferaseâ€1c: role in CNS fatty acid metabolism, food intake, and body weight. Journal of Neurochemistry, 2008, 105, 1550-1559.	3.9	80
56	Differential effects of central fructose and glucose on hypothalamic malonyl–CoA and food intake. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16871-16875.	7.1	168
57	Hypothalamic Malonyl-Coenzyme A and the Control of Energy Balance. Molecular Endocrinology, 2008, 22, 2012-2020.	3.7	33
58	Control of hypothalamic malonyl oA by central glucose and leptin. FASEB Journal, 2008, 22, 116.2.	0.5	0
59	Regulation of hypothalamic malonyl-CoA by central glucose and leptin. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19285-19290.	7.1	113
60	Localization and effect of ectopic expression of CPT1c in CNS feeding centers. Biochemical and Biophysical Research Communications, 2007, 359, 469-474.	2.1	42
61	Brain fatty acid synthase activates PPARα to maintain energy homeostasis. Journal of Clinical Investigation, 2007, 117, 2539-2552.	8.2	183
62	Control of Energy Homeostasis: Role of Enzymes and Intermediates of Fatty Acid Metabolism in the Central Nervous System. Annual Review of Nutrition, 2006, 26, 23-44.	10.1	78
63	The Role of Hypothalamic Malonyl-CoA in Energy Homeostasis. Journal of Biological Chemistry, 2006, 281, 37265-37269.	3.4	97
64	The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7282-7287.	7.1	237