
Thomas R Huser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8305494/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates. Nano Letters, 2005, 5, 1569-1574.	9.1	1,070
2	Super-resolution microscopy demystified. Nature Cell Biology, 2019, 21, 72-84.	10.3	754
3	Micro-Raman Spectroscopy Detects Individual Neoplastic and Normal Hematopoietic Cells. Biophysical Journal, 2006, 90, 648-656.	0.5	577
4	Quantitative 3D Video Microscopy of HIV Transfer Across T Cell Virological Synapses. Science, 2009, 323, 1743-1747.	12.6	437
5	Structural changes in fused silica after exposure to focused femtosecond laser pulses. Optics Letters, 2001, 26, 1726.	3.3	361
6	Super-Resolution Structured Illumination Microscopy. Chemical Reviews, 2017, 117, 13890-13908.	47.7	353
7	Intracellular pH Sensors Based on Surface-Enhanced Raman Scattering. Analytical Chemistry, 2004, 76, 7064-7068.	6.5	316
8	Unique Gold Nanoparticle Aggregates as a Highly Active Surface-Enhanced Raman Scattering Substrate. Journal of Physical Chemistry B, 2004, 108, 19191-19197.	2.6	308
9	Single chain spectroscopy of conformational dependence of conjugated polymer photophysics. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11187-11191.	7.1	297
10	Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nature Communications, 2016, 7, 10980.	12.8	238
11	Surface-enhanced Raman scattering on nanoporous Au. Applied Physics Letters, 2006, 89, 053102.	3.3	204
12	Improving Nanoprobes Using Surface-Enhanced Raman Scattering from 30-nm Hollow Gold Particles. Analytical Chemistry, 2006, 78, 4732-4736.	6.5	198
13	Nondestructive Identification of Individual Leukemia Cells by Laser Trapping Raman Spectroscopy. Analytical Chemistry, 2008, 80, 2180-2187.	6.5	193
14	Waveguide fabrication in phosphate glasses using femtosecond laser pulses. Applied Physics Letters, 2003, 82, 2371-2373.	3.3	179
15	Chemical analysis in vivo and in vitro by Raman spectroscopy—from single cells to humans. Current Opinion in Biotechnology, 2009, 20, 63-73.	6.6	179
16	Label-Free Separation of Human Embryonic Stem Cells and Their Cardiac Derivatives Using Raman Spectroscopy. Analytical Chemistry, 2009, 81, 1324-1331.	6.5	178
17	Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses. Applied Physics A: Materials Science and Processing, 2003, 76, 367-372.	2.3	177
18	Reagentless Identification of Single Bacterial Spores in Aqueous Solution by Confocal Laser Tweezers Raman Spectroscopy. Analytical Chemistry, 2004, 76, 599-603.	6.5	177

#	Article	IF	CITATIONS
19	Mechanism-Based Facilitated Maturation of Human Pluripotent Stem Cell–Derived Cardiomyocytes. Circulation: Arrhythmia and Electrophysiology, 2013, 6, 191-201.	4.8	164
20	Fabrication of a Carbon Nanotube-Embedded Silicon Nitride Membrane for Studies of Nanometer-Scale Mass Transport. Nano Letters, 2004, 4, 2245-2250.	9.1	152
21	Absence of Transverse Tubules Contributes to Non-Uniform Ca ²⁺ Wavefronts in Mouse and Human Embryonic Stem Cell–Derived Cardiomyocytes. Stem Cells and Development, 2009, 18, 1493-1500.	2.1	150
22	Chip-based wide field-of-view nanoscopy. Nature Photonics, 2017, 11, 322-328.	31.4	128
23	MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation. EMBO Journal, 2020, 39, e104105.	7.8	127
24	Plasmon optics of structured silver films. Physical Review B, 2001, 63, .	3.2	121
25	Efficient phototrophic production of a high-value sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii. Metabolic Engineering, 2016, 38, 331-343.	7.0	120
26	Methods and Applications of Raman Microspectroscopy to Single-Cell Analysis. Applied Spectroscopy, 2013, 67, 813-828.	2.2	118
27	Cell-to-Cell Transfer of HIV-1 via Virological Synapses Leads to Endosomal Virion Maturation that Activates Viral Membrane Fusion. Cell Host and Microbe, 2011, 10, 551-562.	11.0	117
28	Raman spectroscopy and microscopy of individual cells and cellular components. Laser and Photonics Reviews, 2008, 2, 325-349.	8.7	113
29	Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction. Nature Communications, 2019, 10, 4315.	12.8	107
30	Raman spectroscopy of DNA packaging in individual human sperm cells distinguishes normal from abnormal cells. Journal of Biophotonics, 2009, 2, 322-332.	2.3	102
31	Rapid, Solution-Based Characterization of Optimized SERS Nanoparticle Substrates. Journal of the American Chemical Society, 2009, 131, 162-169.	13.7	100
32	Controlled non-classical photon emission from single conjugated polymer molecules. Chemical Physics Letters, 2003, 370, 393-398.	2.6	89
33	Fatty Acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes. Journal of Immunology, 2010, 184, 3927-3936.	0.8	86
34	Raman Spectroscopic Analysis of Biochemical Changes in Individual Triglyceride-Rich Lipoproteins in the Pre- and Postprandial State. Analytical Chemistry, 2005, 77, 5870-5876.	6.5	83
35	Three-dimensional structured illumination microscopy of liver sinusoidal endothelial cell fenestrations. Journal of Structural Biology, 2010, 171, 382-388.	2.8	82
36	Analysis of Single Bacterial Spores by Micro-Raman Spectroscopy. Applied Spectroscopy, 2003, 57, 868-871.	2.2	79

#	Article	IF	CITATIONS
37	Contrast enhancement using polarization-modulation scanning near-field optical microscopy (PM-SNOM). Ultramicroscopy, 1998, 71, 333-340.	1.9	69
38	Ferroelectric domain characterisation and manipulation : A challenge for scanning probe microscopy. Ferroelectrics, 1999, 222, 153-162.	0.6	68
39	The Relationship between Fenestrations, Sieve Plates and Rafts in Liver Sinusoidal Endothelial Cells. PLoS ONE, 2012, 7, e46134.	2.5	68
40	Super-resolution optical microscopy resolves network morphology of smart colloidal microgels. Physical Chemistry Chemical Physics, 2018, 20, 5074-5083.	2.8	67
41	Raman spectroscopy for physiological investigations of tissues and cells. Advanced Drug Delivery Reviews, 2015, 89, 57-70.	13.7	66
42	Solvent-related conformational changes and aggregation of conjugated polymers studied by single molecule fluorescence spectroscopy. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 144, 43-51.	3.9	65
43	SIMPLE: Structured illumination based point localization estimator with enhanced precision. Optics Express, 2019, 27, 24578.	3.4	63
44	Optical trapping and propulsion of red blood cells on waveguide surfaces. Optics Express, 2010, 18, 21053.	3.4	62
45	Multimodal super-resolution optical microscopy visualizes the close connection between membrane and the cytoskeleton in liver sinusoidal endothelial cell fenestrations. Scientific Reports, 2015, 5, 16279.	3.3	62
46	Fast, flexible algorithm for calculating photon correlations. Optics Letters, 2006, 31, 829.	3.3	61
47	Nanoscopy of bacterial cells immobilized by holographic optical tweezers. Nature Communications, 2016, 7, 13711.	12.8	61
48	Size-Dependent Lipid Content in Human Milk Fat Globules. Journal of Agricultural and Food Chemistry, 2008, 56, 7446-7450.	5.2	60
49	Monitoring dynamic protein expression in livingE. coli. Bacterial cells by laser tweezers Raman spectroscopy. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2007, 71A, 468-474.	1.5	56
50	Instant Live-Cell Super-Resolution Imaging of Cellular Structures by Nanoinjection of Fluorescent Probes. Nano Letters, 2015, 15, 1374-1381.	9.1	55
51	Direct comparison of fatty acid ratios in single cellular lipid droplets as determined by comparative Raman spectroscopy and gas chromatography. Analyst, The, 2013, 138, 6662.	3.5	54
52	High-contrast, fast chemical imaging by coherent Raman scattering using a self-synchronized two-colour fibre laser. Light: Science and Applications, 2020, 9, 25.	16.6	50
53	Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images. Photonics Research, 2021, 9, B168.	7.0	44
54	Binding of Apolipoprotein E Inhibits the Oligomer Growth of Amyloid-β Peptide in Solution as Determined by Fluorescence Cross-correlation Spectroscopy. Journal of Biological Chemistry, 2013, 288, 11628-11635.	3.4	39

#	Article	IF	CITATIONS
55	A highly sensitive nanoscale pH-sensor using Au nanoparticles linked by a multifunctional Raman-active reporter molecule. Nanoscale, 2014, 6, 7971-7980.	5.6	39
56	Entropy-Based Super-Resolution Imaging (ESI): From Disorder to Fine Detail. ACS Photonics, 2015, 2, 1049-1056.	6.6	39
57	Characterization of an industry-grade CMOS camera well suited for single molecule localization microscopy – high performance super-resolution at low cost. Scientific Reports, 2017, 7, 14425.	3.3	39
58	Pulsed-Interleaved Excitation FRET Measurements on Single Duplex DNA Molecules Inside C-Shaped Nanoapertures. Nano Letters, 2007, 7, 1749-1756.	9.1	38
59	Label-free in vivo analysis of intracellular lipid droplets in the oleaginous microalga Monoraphidium neglectum by coherent Raman scattering microscopy. Scientific Reports, 2016, 6, 35340.	3.3	35
60	Imaging fenestrations in liver sinusoidal endothelial cells by optical localization microscopy. Physical Chemistry Chemical Physics, 2014, 16, 12576-12581.	2.8	34
61	Characterization of Proton Exchange Layer Profiles in KD2PO4 Crystals by Micro-Raman Spectroscopy. Applied Spectroscopy, 2004, 58, 349-351.	2.2	33
62	Growth, Differentiation, and Biochemical Signatures of Rhesus Monkey Mesenchymal Stem Cells. Stem Cells and Development, 2008, 17, 185-198.	2.1	32
63	Manipulating CD4 ⁺ T cells by optical tweezers for the initiation of cellâ€cell transfer of HIVâ€1. Journal of Biophotonics, 2010, 3, 216-223.	2.3	32
64	Single-molecule dynamics of phytochrome-bound fluorophores probed by fluorescence correlation spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11136-11141.	7.1	31
65	Optical trapping and coherent anti-Stokes Raman scattering (CARS) spectroscopy of submicron-size particles. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11, 858-863.	2.9	30
66	Labelâ€free imaging and analysis of the effects of lipolysis products on primary hepatocytes. Journal of Biophotonics, 2011, 4, 425-434.	2.3	30
67	Characterization of De Novo Synthesized GPCRs Supported in Nanolipoprotein Discs. PLoS ONE, 2012, 7, e44911.	2.5	30
68	Hepatic Vasculopathy and Regenerative Responses of the Liver in Fatal Cases of COVID-19. Clinical Gastroenterology and Hepatology, 2021, 19, 1726-1729.e3.	4.4	30
69	Aggregation quenching in thin films of MEH-PPV studied by near-field scanning optical microscopy and spectroscopy. Synthetic Metals, 2001, 116, 333-337.	3.9	29
70	Simultaneous forward and epi-CARS microscopy with a single detector by timecorrelated single photon counting. Optics Express, 2008, 16, 2168.	3.4	29
71	The thuEFGKAB Operon of Rhizobia and Agrobacterium tumefaciens Codes for Transport of Trehalose, Maltitol, and Isomers of Sucrose and Their Assimilation through the Formation of Their 3-Keto Derivatives. Journal of Bacteriology, 2013, 195, 3797-3807.	2.2	28
72	Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells. Scientific Reports, 2016, 6, 26716.	3.3	28

#	Article	IF	CITATIONS
73	Nuclear transformation and functional gene expression in the oleaginous microalga Monoraphidium neglectum. Journal of Biotechnology, 2017, 249, 10-15.	3.8	28
74	Compact fs ytterbium fiber laser at 1010 nm for biomedical applications. Biomedical Optics Express, 2017, 8, 4921.	2.9	28
75	Modulation-enhanced localization microscopy. JPhys Photonics, 2020, 2, 041001.	4.6	28
76	Characterizing diffusion dynamics of a membrane protein associated with nanolipoproteins using fluorescence correlation spectroscopy. Protein Science, 2011, 20, 437-447.	7.6	27
77	Survival rate of eukaryotic cells following electrophoretic nanoinjection. Scientific Reports, 2017, 7, 41277.	3.3	27
78	Fluorescence Spectroscopy of Color Centers Generated in Phosphate Glasses after Exposure to Femtosecond Laser Pulses. Journal of the American Ceramic Society, 2002, 85, 1037-1040.	3.8	26
79	Serial Raman spectroscopy of particles trapped on a waveguide. Optics Express, 2013, 21, 2964.	3.4	26
80	Plasmon transmissivity and reflectivity of narrow grooves in a silver film. Journal of Microscopy, 1999, 194, 571-573.	1.8	25
81	Lipid-cell interactions in human monocytes investigated by doubly-resonant coherent anti-Stokes Raman scattering microscopy. Journal of Biomedical Optics, 2011, 16, 021117.	2.6	25
82	Raman spectroscopy of individual monocytes reveals that single-beam optical trapping of mononuclear cells occurs by their nucleus. Journal of Optics (United Kingdom), 2011, 13, 044021.	2.2	24
83	Observation and analysis of near-field optical diffraction. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1999, 16, 141.	1.5	22
84	Helium Ion Microscopy Visualizes Lipid Nanodomains in Mammalian Cells. Small, 2015, 11, 5781-5789.	10.0	22
85	Resolving the internal morphology of core–shell microgels with super-resolution fluorescence microscopy. Nanoscale Advances, 2020, 2, 323-331.	4.6	22
86	Cost-Effective Live Cell Structured Illumination Microscopy with Video-Rate Imaging. ACS Photonics, 2021, 8, 1639-1648.	6.6	22
87	Combined force and photonic probe microscope with single molecule sensitivity. Review of Scientific Instruments, 2003, 74, 1217-1221.	1.3	21
88	Tracking and quantitation of fluorescent HIV during cell-to-cell transmission. Methods, 2011, 53, 20-26.	3.8	21
89	Quantitative comparison of camera technologies for cost-effective super-resolution optical fluctuation imaging (SOFI). JPhys Photonics, 2019, 1, 044001.	4.6	21
90	Quantitative Super-Resolution Microscopy of Nanopipette-Deposited Fluorescent Patterns. ACS Nano, 2015, 9, 8122-8130.	14.6	19

#	Article	IF	CITATIONS
91	Nanoparticles as Nonfluorescent Analogues of Fluorophores for Optical Nanoscopy. ACS Nano, 2015, 9, 6196-6205.	14.6	19
92	A Mitochondrial Autonomously Replicating Sequence from Pichia pastoris for Uniform High Level Recombinant Protein Production. Frontiers in Microbiology, 2017, 8, 780.	3.5	19
93	Scanning near-field optical microscopy in Basel, Ruschlikon, and Zurich. Optical Engineering, 1995, 34, 2441.	1.0	18
94	Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage. Analyst, The, 2015, 140, 223-229.	3.5	18
95	New ways of looking at very small holes – using optical nanoscopy to visualize liver sinusoidal endothelial cell fenestrations. Nanophotonics, 2018, 7, 575-596.	6.0	18
96	Bio-assay based on single molecule fluorescence detection in microfluidic channels. Analytical and Bioanalytical Chemistry, 2006, 385, 1384-1388.	3.7	17
97	Nano-Biophotonics: new tools for chemical nano-analytics. Current Opinion in Chemical Biology, 2008, 12, 497-504.	6.1	17
98	Raman Microscopy based on Doubly-Resonant Four-Wave Mixing (DR-FWM). Optics Express, 2009, 17, 17044.	3.4	17
99	CRISPR/Cas9-mediated knockout of c-REL in HeLa cells results in profound defects of the cell cycle. PLoS ONE, 2017, 12, e0182373.	2.5	17
100	Modern Trends in Imaging VI: Raman Scattering in Pathology. Analytical Cellular Pathology, 2012, 35, 145-163.	1.4	16
101	Scanning near-field optical microscopy of cholesteric liquid crystals. Journal of Chemical Physics, 1998, 108, 7876-7880.	3.0	15
102	Time-gated single photon counting enables separation of CARS microscopy data from multiphoton-excited tissue autofluorescence. Optics Express, 2007, 15, 16839.	3.4	15
103	Synthesis and Characterization of a Disulfide Reporter Molecule for Enhancing pH Measurements Based on Surface-Enhanced Raman Scattering. Analytical Chemistry, 2012, 84, 3574-3580.	6.5	15
104	Labelâ€Free Analysis of Cellular Biochemistry by Raman Spectroscopy and Microscopy. , 2013, 3, 941-956.		15
105	Monitoring Trehalose Uptake and Conversion by Single Bacteria using Laser Tweezers Raman Spectroscopy. Analytical Chemistry, 2013, 85, 7264-7270.	6.5	15
106	High-speed multiplane structured illumination microscopy of living cells using an image-splitting prism. Nanophotonics, 2020, 9, 143-148.	6.0	15
107	Dynamic Recompartmentalization of Supported Lipid Bilayers Using Focused Femtosecond Laser Pulses. Journal of the American Chemical Society, 2007, 129, 2422-2423.	13.7	14
108	Counting Constituents in Molecular Complexes by Fluorescence Photon Antibunching. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 996-1005.	2.9	14

#	Article	IF	CITATIONS
109	Propagation and diffraction of locally excited surface plasmons. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2001, 18, 1552.	1.5	13
110	Synthesis of the New Cyanine-Labeled Bacterial Lipooligosaccharides for Intracellular Imaging and in Vitro Microscopy Studies. Bioconjugate Chemistry, 2019, 30, 1649-1657.	3.6	13
111	Generation of a μ-1,2-hydroperoxo FellIFellI and a μ-1,2-peroxo FelVFellI Complex. Nature Communications, 2022, 13, 1376.	12.8	13
112	Correlation-Matrix Analysis of Two-Color Coincidence Events in Single-Molecule Fluorescence Experiments. Analytical Chemistry, 2012, 84, 2729-2736.	6.5	12
113	Optical fluctuation microscopy based on calculating local entropy values. Chemical Physics Letters, 2013, 587, 1-6.	2.6	12
114	Analyzing life-history traits and lipid storage using CARS microscopy for assessing effects of copper on the fitness of Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 2018, 156, 255-262.	6.0	12
115	Cost-efficient nanoscopy reveals nanoscale architecture of liver cells and platelets. Nanophotonics, 2019, 8, 1299-1313.	6.0	12
116	Highly compact and cost-effective 2-beam super-resolution structured illumination microscope based on all-fiber optic components. Optics Express, 2021, 29, 11833.	3.4	11
117	Simulating digital micromirror devices for patterning coherent excitation light in structured illumination microscopy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200147.	3.4	11
118	Expression and Association of the Yersinia pestis Translocon Proteins, YopB and YopD, Are Facilitated by Nanolipoprotein Particles. PLoS ONE, 2016, 11, e0150166.	2.5	11
119	Polystyrene microbeads influence lipid storage distribution in C. elegans as revealed by coherent anti-Stokes Raman scattering (CARS) microscopy. Environmental Pollution, 2022, 294, 118662.	7.5	11
120	Rapid 3D fluorescence imaging of individual optically trapped living immune cells. Journal of Biophotonics, 2015, 8, 208-216.	2.3	10
121	Surface-Enhanced Raman Spectroscopy of Carbon Nanomembranes from Aromatic Self-Assembled Monolayers. Langmuir, 2018, 34, 2692-2698.	3.5	10
122	Smart microgels investigated by super-resolution fluorescence microscopy: influence of the monomer structure on the particle morphology. Soft Matter, 2020, 16, 8078-8084.	2.7	10
123	Photonic Technologies for Liquid Biopsies: Recent Advances and Open Research Challenges. Laser and Photonics Reviews, 2021, 15, .	8.7	10
124	Distribution analysis of the photon correlation spectroscopy of discrete numbers of dye molecules conjugated to DNA. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11, 873-880.	2.9	9
125	Primary rat LSECs preserve their characteristic phenotype after cryopreservation. Scientific Reports, 2018, 8, 14657.	3.3	9
126	Super-resolution fluorescence microscopy by line-scanning with an unmodified two-photon microscope. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200300.	3.4	9

#	Article	IF	CITATIONS
127	Large Field-of-View Super-Resolution Optical Microscopy Based on Planar Polymer Waveguides. ACS Photonics, 2021, 8, 1944-1950.	6.6	9
128	Faraday-rotation imaging by near-field optical microscopy. Zeitschrift Für Physik B-Condensed Matter, 1997, 104, 183-184.	1.1	8
129	Physico-Chemical Characterization of Polylipid Nanoparticles for Gene Delivery to the Liver. Bioconjugate Chemistry, 2009, 20, 2047-2054.	3.6	8
130	Signal generation and Ramanâ€resonant imaging by nonâ€degenerate fourâ€wave mixing under tight focusing conditions. Journal of Biophotonics, 2010, 3, 169-175.	2.3	7
131	Multiscale and Multimodal Optical Imaging of the Ultrastructure of Human Liver Biopsies. Frontiers in Physiology, 2021, 12, 637136.	2.8	7
132	Raman scattering in pathology. Analytical Cellular Pathology, 2012, 35, 145-63.	1.4	7
133	Dual color DMD-SIM by temperature-controlled laser wavelength matching. Optics Express, 2021, 29, 39696.	3.4	7
134	A Replication-Competent HIV Clone Carrying GFP-Env Reveals Rapid Env Recycling at the HIV-1 T Cell Virological Synapse. Viruses, 2022, 14, 38.	3.3	7
135	Instrumental developments and recent experiments in near-field optical microscopy. Thin Solid Films, 1996, 273, 149-153.	1.8	6
136	<title>Fs-laser fabrication of photonic structures in glass: the role of glass composition</title> . , 2004, , .		6
137	Non-DNA Methods for Biological Signatures. , 2005, , 251-294.		6
138	Stoichiometry of Reconstituted High-Density Lipoproteins in the Hydrated State Determined by Photon Antibunching. Biophysical Journal, 2011, 101, 970-975.	0.5	6
139	Improving Nanoparticle Dispersion and Charge Transfer in Cadmium Telluride Tetrapod and Conjugated Polymer Blends. ACS Applied Materials & Interfaces, 2011, 3, 1077-1082.	8.0	6
140	Coherent Antiâ€ 5 tokes Emission from Gold Nanorods and its Potential for Imaging Applications. ChemPhysChem, 2013, 14, 1951-1955.	2.1	6
141	Quantifying molecular colocalization in live cell fluorescence microscopy. Journal of Biophotonics, 2015, 8, 124-132.	2.3	6
142	MoNa – A Cost-Efficient, Portable System for the Nanoinjection of Living Cells. Scientific Reports, 2019, 9, 5480.	3.3	6
143	Vibrational spectroscopic imaging and live cell video microscopy for studying differentiation of primary human alveolar epithelial cells. Journal of Biophotonics, 2019, 12, e201800052.	2.3	6
144	Towards better scanning near-field optical microscopy probes - progress and new developments. Journal of Microscopy, 1999, 194, 365-368.	1.8	4

#	Article	IF	CITATIONS
145	Raman Spectroscopy of Living Cells. , 2010, , 185-210.		3
146	Endocytic Motif on a Biotin-Tagged HIV-1 Env Modulates the Co-Transfer of Env and Gag during Cell-to-Cell Transmission. Viruses, 2021, 13, 1729.	3.3	3
147	Pulse length variation causing spectral distortions in OPO-based hyperspectral coherent Raman scattering microscopy. Optics Express, 2018, 26, 28312.	3.4	3
148	Waveguide fabrication in fused silica using tightly focused femtosecond laser pulses. , 2002, 4640, 129.		2
149	Carbon Nanotube-Based Permeable Membranes. Materials Research Society Symposia Proceedings, 2004, 820, 1.	0.1	2
150	Biophotonics and Regenerative Medicine - ideal partners for research in the 21stCentury. Journal of Biophotonics, 2009, 2, 613-614.	2.3	2
151	Visualizing Cell-to-cell Transfer of HIV using Fluorescent Clones of HIV and Live Confocal Microscopy. Journal of Visualized Experiments, 2010, , .	0.3	2
152	Comment on "Magnetic-field-enabled resolution enhancement in super-resolution imaging―by M. Zhang et al., Phys. Chem. Chem. Phys., 2015, 17 , 6722–6727. Physical Chemistry Chemical Physics, 2017, 19, 4887-4890.	2.8	2
153	Optical Properties of CdSe Nanoparticle Assemblies. Materials Research Society Symposia Proceedings, 2003, 789, 57.	0.1	1
154	Differential Imaging of Biological Structures with Doubly-resonant Coherent Anti-stokes Raman Scattering (CARS). Journal of Visualized Experiments, 2010, , .	0.3	1
155	Optical trapping forces on biological cells on a waveguide surface. , 2011, , .		1
156	Waveguide chip coupled with microfluidics enables super-resolution live-cell imaging. , 2020, , .		1
157	Light emission from self-assembled microstructures of phenylenevinylene polymers with dendritic side-groups. , 2000, , .		0
158	Structural changes in silica glass after waveguide writing with femtosecond laser pulses. , 2001, , .		0
159	Waveguide fabrication using femtosecond laser pulses. , 0, , .		0
160	Application of SERS nanoparticles for intracellular pH measurements. , 2004, 5512, 80.		0
161	Single Molecule Pulsed Interleaved Excitation Fluorescence Resonance Energy Transfer (PIE-FRET) inside Nanometer-scale Apertures at Biologically Relevant Concentration. , 2007, , .		0
162	Novel optical oxy/deoxy hemoglobin monitoring as a modality for non-invasive real-time monitoring of cognitive activity and beyond. Proceedings of SPIE, 2008, , .	0.8	0

#	Article	IF	CITATIONS
163	Advanced Fluorescence and Label-Free Live Cell Microscopy. , 2008, , .		0
164	Fluorescence enhancement and focal volume reduction observed in c-shaped nano-apertures. , 2008, , .		0
165	Applying Biophotonics Science and Technology in Medicine and the Life Sciences. , 2009, , .		Ο
166	Structured illumination microscopy applications towards liver sinusoidal endothelial cell fenestrations and HIV-1 cell-to-cell transmission. , 2010, , .		0
167	Experimental and numerical study of trapping of cells on a waveguide. , 2011, , .		0
168	Quantifying molecular colocalization in live cell fluorescence microscopy. , 2013, , .		0
169	Distinguishing immature and mature HIV-1 particles by superresolution optical fluorescence microscopy. , 2013, , .		0
170	Optical deformation of red blood cells trapped on a narrow waveguide. , 2014, , .		0
171	Optical nanoscopy of a living cell. Proceedings of SPIE, 2014, , .	0.8	0
172	Helium Ion Microscopy: Helium Ion Microscopy Visualizes Lipid Nanodomains in Mammalian Cells (Small 43/2015). Small, 2015, 11, 5852-5852.	10.0	0
173	Optical nanoscopy to reveal structural and functional properties of liver cells (Presentation) Tj ETQq1 1 0.78431	4 rgBT /Ov	verlock 10 Tf
174	Quantitative networkdensity distribution measurements on smart thermoresponsive colloids by super-resolution optical microscopy. , 2017, , .		0
175	Resolving T cell $\hat{a} \in$ "T cell transfer of HIV-1 by optical nanoscopy. , 2017, , .		0
176	Editorial Introduction to the JSTQE Issue on Biophotonics. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-4.	2.9	0
177	High-Contrast Coherent Raman Scattering Imaging using a Self-Synchronized Dual-Color Fiber Laser. , 2019, , .		0
178	Editorial Introduction to JSTQE Special Issue on Biophotonics. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-4.	2.9	0
179	Application of Single Molecule FRET Photon-correlation Spectroscopy to Studying DNA-Protein Interactions. , 2005, , .		0
180	Laser Tweezers Raman Spectroscopy Detects Differences between Normal Human Lymphocytes, Activated Lymphocytes and Leukemia Blood, 2005, 106, 4530-4530.	1.4	0

#	Article	IF	CITATIONS
181	Raman microscopy of individual cells and cellular components. , 2007, , .		0
182	Study of Membrane Dynamics with Biophotonic Techniques. , 2008, , .		0
183	Live 3D Imaging of HIV-1Transfer through the Virological Synapse. , 2011, , .		0
184	Coherent Anti-Stokes Emission from Gold Nanorods and Its Potential for Imaging. , 2012, , .		0
185	Coherent Anti-Stokes Emission from Gold Nanorods and Its Potential for Imaging. , 2012, , .		0
186	Enhancing the molecular sensitivity of coherent Raman scattering by doubly-resonant CARS (DR-CARS). , 2015, , .		0
187	Label-free super-resolution optical microscopy of cellular dynamics. , 2015, , .		0
188	SI-CARS: CARS microscopy beyond the diffraction limit by structured illumination. , 2015, , .		0
189	Synchronized dual-repetition-rate two-color fiber lasers for coherent Raman imaging. , 2016, , .		0
190	Editorial: Roles of Liver Sinusoidal Endothelial Cells in Liver Homeostasis and Disease. Frontiers in Physiology, 2022, 13, 869473.	2.8	0