
Jean-Louis Herrmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8304982/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	DC-SIGN Is the Major Mycobacterium tuberculosis Receptor on Human Dendritic Cells. Journal of Experimental Medicine, 2003, 197, 121-127.	4.2	587
2	Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nature Reviews Microbiology, 2020, 18, 392-407.	13.6	407
3	US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax, 2016, 71, i1-i22.	2.7	348
4	<i>Mycobacterium abscessus</i> cording prevents phagocytosis and promotes abscess formation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E943-52.	3.3	314
5	Non Mycobacterial Virulence Genes in the Genome of the Emerging Pathogen Mycobacterium abscessus. PLoS ONE, 2009, 4, e5660.	1.1	309
6	US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis: executive summary. Thorax, 2016, 71, 88-90.	2.7	274
7	The Cell Surface Receptor DC-SIGN Discriminates betweenMycobacterium Species through Selective Recognition of the Mannose Caps on Lipoarabinomannan. Journal of Biological Chemistry, 2003, 278, 5513-5516.	1.6	228
8	Constrained Intracellular Survival of <i>Mycobacterium tuberculosis</i> in Human Dendritic Cells. Journal of Immunology, 2003, 170, 1939-1948.	0.4	155
9	DC-SIGN Induction in Alveolar Macrophages Defines Privileged Target Host Cells for Mycobacteria in Patients with Tuberculosis. PLoS Medicine, 2005, 2, e381.	3.9	153
10	Identification and characterization of the genetic changes responsible for the characteristic smoothâ€toâ€rough morphotype alterations of clinically persistent <i><scp>M</scp>ycobacterium abscessus</i> . Molecular Microbiology, 2013, 90, 612-629.	1.2	142
11	The distinct fate of smooth and rough <i>Mycobacterium abscessus</i> variants inside macrophages. Open Biology, 2016, 6, 160185.	1.5	132
12	β-Lactamase inhibition by avibactam in <i>Mycobacterium abscessus</i> . Journal of Antimicrobial Chemotherapy, 2015, 70, 1051-1058.	1.3	126
13	Acute Respiratory Failure Involving an R Variant of <i>Mycobacterium abscessus</i> . Journal of Clinical Microbiology, 2009, 47, 271-274.	1.8	125
14	The diverse family of <scp>M</scp> mp <scp>L</scp> transporters in mycobacteria: from regulation to antimicrobial developments. Molecular Microbiology, 2017, 104, 889-904.	1.2	109
15	A new piperidinol derivative targeting mycolic acid transport in <i>Mycobacterium abscessus</i> . Molecular Microbiology, 2016, 101, 515-529.	1.2	100
16	Identification of genes required for <i>Mycobacterium abscessus</i> growth in vivo with a prominent role of the ESX-4 locus. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1002-E1011.	3.3	98
17	Deciphering the molecular bases of Mycobacterium tuberculosis binding to the lectin DC-SIGN reveals an underestimated complexity. Biochemical Journal, 2005, 392, 615-624.	1.7	96
18	Lipoprotein Access to MHC Class I Presentation During Infection of Murine Macrophages with Live Mycobacteria. Journal of Immunology, 2001, 166, 447-457.	0.4	93

#	Article	IF	CITATIONS
19	The Peptidoglycan of <i>Mycobacterium abscessus</i> Is Predominantly Cross-Linked by <scp>l</scp> , <scp>d</scp> -Transpeptidases. Journal of Bacteriology, 2011, 193, 778-782.	1.0	91
20	Robustness of two MALDI-TOF mass spectrometry systems for bacterial identification. Journal of Microbiological Methods, 2012, 89, 133-136.	0.7	89
21	Outbreak ofKlebsiella pneumoniaeproducing transferable AmpC-type β-lactamase (ACC-1) originating fromHafnia alvei. FEMS Microbiology Letters, 2000, 187, 35-40.	0.7	84
22	Insights into the smoothâ€ŧoâ€rough transitioning in <i>Mycobacterium bolletii</i> unravels a functional Tyr residue conserved in all mycobacterial MmpL family members. Molecular Microbiology, 2016, 99, 866-883.	1.2	82
23	Mycobacterium avium and Mycobacterium abscessus complex target distinct cystic fibrosis patient subpopulations. Journal of Cystic Fibrosis, 2013, 12, 74-80.	0.3	81
24	<i>In Vivo</i> Assessment of Drug Efficacy against Mycobacterium abscessus Using the Embryonic Zebrafish Test System. Antimicrobial Agents and Chemotherapy, 2014, 58, 4054-4063.	1.4	81
25	Comparing Mycobacterium massiliense and Mycobacterium abscessus lung infections in cystic fibrosis patients. Journal of Cystic Fibrosis, 2015, 14, 63-69.	0.3	80
26	Glycopeptidolipids, a Double-Edged Sword of the Mycobacterium abscessus Complex. Frontiers in Microbiology, 2018, 9, 1145.	1.5	80
27	Bedaquiline Inhibits the ATP Synthase in Mycobacterium abscessus and Is Effective in Infected Zebrafish. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	79
28	Mycobacterium abscessus-Induced Granuloma Formation Is Strictly Dependent on TNF Signaling and Neutrophil Trafficking. PLoS Pathogens, 2016, 12, e1005986.	2.1	78
29	The MPB83 Antigen from Mycobacterium bovis ContainsO-Linked Mannose and (1 → 3)-Mannobiose Moieties. Journal of Biological Chemistry, 2003, 278, 16423-16432.	1.6	76
30	Inhibition of the β-Lactamase Bla _{Mab} by Avibactam Improves the <i>In Vitro</i> and <i>In Vivo</i> Efficacy of Imipenem against Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	73
31	Deletion of a dehydratase important for intracellular growth and cording renders rough <i>Mycobacterium abscessus</i> avirulent. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4228-37.	3.3	67
32	Overexpression of proinflammatory TLR-2-signalling lipoproteins in hypervirulent mycobacterial variants. Cellular Microbiology, 2011, 13, 692-704.	1.1	66
33	The Diverse Cellular and Animal Models to Decipher the Physiopathological Traits of Mycobacterium abscessus Infection. Frontiers in Cellular and Infection Microbiology, 2017, 7, 100.	1.8	65
34	CFTR Protects against Mycobacterium abscessus Infection by Fine-Tuning Host Oxidative Defenses. Cell Reports, 2019, 26, 1828-1840.e4.	2.9	58
35	Septic Shock Caused by Ochrobactrum anthropi in an Otherwise Healthy Host. Journal of Clinical Microbiology, 2003, 41, 1339-1341.	1.8	56
36	Genome-wide mosaicism within Mycobacterium abscessus: evolutionary and epidemiological implications. BMC Genomics, 2016, 17, 118.	1.2	56

#	Article	IF	CITATIONS
37	Detailed Contact Data and the Dissemination of Staphylococcus aureus in Hospitals. PLoS Computational Biology, 2015, 11, e1004170.	1.5	55
38	Mycobacterium abscessus Phospholipase C Expression Is Induced during Coculture within Amoebae and Enhances M. abscessus Virulence in Mice. Infection and Immunity, 2015, 83, 780-791.	1.0	54
39	Analysis of post-translational modification of mycobacterial proteins using a cassette expression system. FEBS Letters, 2000, 473, 358-362.	1.3	50
40	Deciphering and Imaging Pathogenesis and Cording of Mycobacterium abscessus in Zebrafish Embryos. Journal of Visualized Experiments, 2015, , .	0.2	48
41	Temporal Dynamics of Interferon Gamma Responses in Children Evaluated for Tuberculosis. PLoS ONE, 2009, 4, e4130.	1.1	47
42	Decreased Susceptibility to Teicoplanin and Vancomycin in Coagulase-Negative Staphylococci Isolated from Orthopedic-Device-Associated Infections. Journal of Clinical Microbiology, 2010, 48, 1428-1431.	1.8	47
43	Active Benzimidazole Derivatives Targeting the MmpL3 Transporter in <i>Mycobacterium abscessus</i> . ACS Infectious Diseases, 2020, 6, 324-337.	1.8	44
44	Use of the INNO-LiPA-MYCOBACTERIA Assay (Version 2) for Identification of Mycobacterium avium - Mycobacterium intracellulare - Mycobacterium scrofulaceum Complex Isolates. Journal of Clinical Microbiology, 2005, 43, 2567-2574.	1.8	42
45	MmpL8 _{MAB} controls <i>Mycobacterium abscessus</i> virulence and production of a previously unknown glycolipid family. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10147-E10156.	3.3	42
46	Mycobacterium abscessusÂvirulence traits unraveled by transcriptomic profiling in amoeba and macrophages. PLoS Pathogens, 2019, 15, e1008069.	2.1	42
47	Intermediate maturation of Mycobacterium tuberculosis LAM-activated human dendritic cells. Cellular Microbiology, 2007, 9, 1412-1425.	1.1	40
48	Fluoroquinolone Use Is a Risk Factor for Methicillin-Resistant Staphylococcus aureus Acquisition in Long-term Care Facilities: A Nested Case-Case-Control Study. Clinical Infectious Diseases, 2014, 59, 206-215.	2.9	40
49	Revisiting the role of phospholipases C in virulence and the lifecycle of Mycobacterium tuberculosis. Scientific Reports, 2015, 5, 16918.	1.6	39
50	Bacterial phospholipases C as vaccine candidate antigens against cystic fibrosis respiratory pathogens: The Mycobacterium abscessus model. Vaccine, 2015, 33, 2118-2124.	1.7	38
51	MgtC as a Host-Induced Factor and Vaccine Candidate against Mycobacterium abscessus Infection. Infection and Immunity, 2016, 84, 2895-2903.	1.0	36
52	Synergic inhibitory activity of amphotericin-B and γ interferon against intracellular Cryptococcus neoformans in murine macrophages. Journal of Antimicrobial Chemotherapy, 1994, 34, 1051-1058.	1.3	35
53	Inhaled therapies, azithromycin and <i>Mycobacterium abscessus</i> in cystic fibrosis patients. European Respiratory Journal, 2013, 41, 1101-1106.	3.1	33
54	Efficacy of Bedaquiline, Alone or in Combination with Imipenem, against Mycobacterium abscessus in C3HeB/FeJ Mice. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	31

#	Article	IF	CITATIONS
55	Cyclipostins and Cyclophostin Analogues as Multitarget Inhibitors That Impair Growth of <i>Mycobacterium abscessus</i> . ACS Infectious Diseases, 2019, 5, 1597-1608.	1.8	30
56	Plasmid-Mediated Rifampin Resistance Encoded by an arr-2 -Like Gene Cassette in Klebsiella pneumoniae Producing an ACC-1 Class C β-Lactamase. Antimicrobial Agents and Chemotherapy, 2001, 45, 2971-2972.	1.4	29
57	Dendritic cells and Mycobacterium tuberculosis: which is the Trojan horse?. Pathologie Et Biologie, 2005, 53, 35-40.	2.2	27
58	<i>Mycobacterium tuberculosis</i> evolutionary pathogenesis and its putative impact on drug development. Future Microbiology, 2014, 9, 969-985.	1.0	27
59	Scrutiny of Mycobacterium tuberculosis 19 kDa antigen proteoforms provides new insights in the lipoglycoprotein biogenesis paradigm. Scientific Reports, 2017, 7, 43682.	1.6	27
60	Neutrophil killing of Mycobacterium abscessus by intra- and extracellular mechanisms. PLoS ONE, 2018, 13, e0196120.	1.1	26
61	B-cell immune responses in HIV positive and HIV negative patients with tuberculosis evaluated with an ELISA using a glycolipid antigen. Tuberculosis, 2007, 87, 109-122.	0.8	25
62	Cyclophostin and Cyclipostins analogues, new promising molecules to treat mycobacterial-related diseases. International Journal of Antimicrobial Agents, 2018, 51, 651-654.	1.1	25
63	Close proximity interactions support transmission of ESBL-K. pneumoniae but not ESBL-E. coli in healthcare settings. PLoS Computational Biology, 2019, 15, e1006496.	1.5	25
64	Ruminococcus gnavus Total Hip Arthroplasty Infection in a 62-Year-Old Man with Ulcerative Colitis. Journal of Clinical Microbiology, 2015, 53, 1428-1430.	1.8	23
65	<i>Gardnerella vaginalis</i> Acute Hip Arthritis in a Renal Transplant Recipient. Journal of Clinical Microbiology, 2009, 47, 264-265.	1.8	21
66	Lsr2 Is an Important Determinant of Intracellular Growth and Virulence in Mycobacterium abscessus. Frontiers in Microbiology, 2019, 10, 905.	1.5	21
67	Conditional Gene Expression in Mycobacterium abscessus. PLoS ONE, 2011, 6, e29306.	1.1	21
68	Genetic determination of the effect of post-translational modification on the innate immune response to the 19 kDa lipoprotein of Mycobacterium tuberculosis. BMC Microbiology, 2009, 9, 93.	1.3	20
69	Controlling Extra- and Intramacrophagic Mycobacterium abscessus by Targeting Mycolic Acid Transport. Frontiers in Cellular and Infection Microbiology, 2017, 7, 388.	1.8	18
70	Liposomal drug delivery to manage nontuberculous mycobacterial pulmonary disease and other chronic lung infections. European Respiratory Review, 2021, 30, 210010.	3.0	16
71	Verapamil Improves the Activity of Bedaquiline against Mycobacterium abscessusIn Vitro and in Macrophages. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	15
72	Structureâ€Based Design and Synthesis of Piperidinolâ€Containing Molecules as New <i>Mycobacterium abscessus</i> Inhibitors. ChemistryOpen, 2020, 9, 351-365.	0.9	15

#	Article	IF	CITATIONS
73	Interindividual Contacts and Carriage of Methicillin-Resistant <i>Staphylococcus aureus</i> : A Nested Case-Control Study. Infection Control and Hospital Epidemiology, 2015, 36, 922-929.	1.0	14
74	Versatile and flexible microfluidic qPCR test for high-throughput SARS-CoV-2 and cellular response detection in nasopharyngeal swab samples. PLoS ONE, 2021, 16, e0243333.	1.1	14
75	Conserved and specialized functions of Type VII secretion systems in non-tuberculous mycobacteria. Microbiology (United Kingdom), 2021, 167, .	0.7	14
76	The first wave of COVID-19 in hospital staff members of a tertiary care hospital in the greater Paris area: A surveillance and risk factors study. International Journal of Infectious Diseases, 2021, 105, 172-179.	1.5	13
77	Genetic Analysis of Glycopeptide-Resistant Staphylococcus epidermidis Strains from Bone and Joint Infections. Journal of Clinical Microbiology, 2013, 51, 1014-1019.	1.8	12
78	Risk factors for respiratory tract bacterial colonization in adults with neuromuscular or neurological disorders and chronic tracheostomy. Respiratory Medicine, 2019, 152, 32-36.	1.3	11
79	Structural and functional characterization of an arylamine <i>N</i> -acetyltransferase from the pathogen <i>Mycobacterium abscessus</i> : differences from other mycobacterial isoforms and implications for selective inhibition. Acta Crystallographica Section D: Biological Crystallography, 2014. 70. 3066-3079.	2.5	10
80	A TLR2-Activating Fraction From Mycobacterium abscessus Rough Variant Demonstrates Vaccine and Diagnostic Potential. Frontiers in Cellular and Infection Microbiology, 2020, 10, 432.	1.8	10
81	Diagnosing Latent Tuberculosis Infection in the HIV Era. Open Respiratory Medicine Journal, 2008, 2, 52-59.	1.3	10
82	Identifying More Epidemic Clones during a Hospital Outbreak of Multidrug-Resistant Acinetobacter baumannii. PLoS ONE, 2012, 7, e45758.	1.1	9
83	Multicenter Evaluation of a Pathogenic Mycobacterium Screening Probe. Journal of Clinical Microbiology, 2001, 39, 2687-2689.	1.8	8
84	Predicting susceptibility to tuberculosis based on gene expression profiling in dendritic cells. Scientific Reports, 2017, 7, 5702.	1.6	8
85	A mobile DNA laboratory for forensic science adapted to coronavirus SARS-CoV-2 diagnosis. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 197-200.	1.3	8
86	Quantiferon-TB Gold: Performance for Ruling out Active Tuberculosis in HIV-Infected Adults with High CD4 Count in Côte d'Ivoire, West Africa. PLoS ONE, 2014, 9, e107245.	1.1	7
87	Identification of Virulence Markers of Mycobacterium abscessus for Intracellular Replication in Phagocytes. Journal of Visualized Experiments, 2018, , .	0.2	6
88	Serological biomarkers for the diagnosis of Mycobacterium abscessus infections in cystic fibrosis patients. Journal of Cystic Fibrosis, 2022, 21, 353-360.	0.3	6
89	Fluoroquinolone Impact on Nasal Methicillin-Resistant and Methicillin-Sensitive Staphylococcus aureus Colonization Durations in Neurologic Long-Term-Care Facilities. Antimicrobial Agents and Chemotherapy, 2015, 59, 7621-7628.	1.4	5
90	Actinomycetoma Caused by <i>Actinomadura mexicana</i> , A Neglected Entity in the Caribbean. Emerging Infectious Diseases, 2020, 26, 379-380.	2.0	5

#	Article	IF	CITATIONS
91	Vaccine strategies against cystic fibrosis pathogens. Human Vaccines and Immunotherapeutics, 2016, 12, 751-756.	1.4	4
92	Screening for tuberculosis before TNFα antagonist initiation: Are current methods good enough?. Joint Bone Spine, 2008, 75, 112-115.	0.8	3
93	IgA Serological Response for the Diagnosis of Mycobacterium abscessus Infections in Patients with Cystic Fibrosis. Microbiology Spectrum, 2022, 10, e0019222.	1.2	3
94	Tuberculosis in patients with and without primary health coverage. European Journal of Internal Medicine, 2002, 13, 180-184.	1.0	2
95	Roscovitine Worsens <i>Mycobacterium abscessus</i> Infection by Reducing DUOX2-mediated Neutrophil Response. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 439-451.	1.4	2
96	Cutibacterium acnes clonal complexes display various growth rates in blood culture vials used for diagnosing orthopedic device-related infections. Anaerobe, 2021, 72, 102469.	1.0	1
97	Guidelines for the management of accidental exposure to Brucella in a country with no case of brucellosis in ruminant animals. Médecine Et Maladies Infectieuses, 2020, 50, 480-485.	5.1	1