## Bing Huang

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/830481/publications.pdf

Version: 2024-02-01

84 papers

5,217 citations

38 h-index 72 g-index

86 all docs 86 docs citations

86 times ranked 7723 citing authors

| #  | Article                                                                                                                                                                                                                                                                                                                                                                              | IF   | Citations |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Intrinsic Currentâ 'Voltage Characteristics of Graphene Nanoribbon Transistors and Effect of Edge Doping. Nano Letters, 2007, 7, 1469-1473.                                                                                                                                                                                                                                          | 9.1  | 548       |
| 2  | Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor. Journal of Physical Chemistry C, 2008, 112, 13442-13446.                                                                                                                                                                                                                      | 3.1  | 488       |
| 3  | Toward Intrinsic Room-Temperature Ferromagnetism in Two-Dimensional Semiconductors. Journal of the American Chemical Society, 2018, 140, 11519-11525.                                                                                                                                                                                                                                | 13.7 | 280       |
| 4  | Interlayer Coupling in Twisted WSe <sub>2</sub> /WS <sub>2</sub> Bilayer Heterostructures Revealed by Optical Spectroscopy. ACS Nano, 2016, 10, 6612-6622.                                                                                                                                                                                                                           | 14.6 | 249       |
| 5  | Quantum Manifestations of Graphene Edge Stress and Edge Instability: A First-Principles Study. Physical Review Letters, 2009, 102, 166404.                                                                                                                                                                                                                                           | 7.8  | 243       |
| 6  | Two-dimensional GaSe/MoSe <sub>2</sub> misfit bilayer heterojunctions by van der Waals epitaxy.<br>Science Advances, 2016, 2, e1501882.                                                                                                                                                                                                                                              | 10.3 | 239       |
| 7  | Defect and impurity properties of hexagonal boron nitride: A first-principles calculation. Physical Review B, 2012, 86, .                                                                                                                                                                                                                                                            | 3.2  | 187       |
| 8  | Suppression of spin polarization in graphene nanoribbons by edge defects and impurities. Physical Review B, 2008, 77, .                                                                                                                                                                                                                                                              | 3.2  | 178       |
| 9  | Making a field effect transistor on a single graphene nanoribbon by selective doping. Applied Physics Letters, 2007, 91, 253122.                                                                                                                                                                                                                                                     | 3.3  | 152       |
| 10 | Towards Direct-Gap Silicon Phases by the Inverse Band Structure Design Approach. Physical Review Letters, 2013, 110, 118702.                                                                                                                                                                                                                                                         | 7.8  | 136       |
| 11 | Effective Control of the Charge and Magnetic States of Transition-Metal Atoms on Single-Layer Boron Nitride. Physical Review Letters, 2012, 108, 206802.                                                                                                                                                                                                                             | 7.8  | 135       |
| 12 | Extremely Low Density and Superâ€Compressible Graphene Cellular Materials. Advanced Materials, 2017, 29, 1701553.                                                                                                                                                                                                                                                                    | 21.0 | 126       |
| 13 | Crystal and electronic structures of Cu <i>x</i> S solar cell absorbers. Applied Physics Letters, 2012, 100, .                                                                                                                                                                                                                                                                       | 3.3  | 105       |
| 14 | Van der Waals Epitaxial Growth of Two-Dimensional Single-Crystalline GaSe Domains on Graphene. ACS Nano, 2015, 9, 8078-8088.                                                                                                                                                                                                                                                         | 14.6 | 103       |
| 15 | Chemical Functionalization of Graphene Nanoribbons by Carboxyl Groups on Stone-Wales Defects.  Journal of Physical Chemistry C. 2008, 112, 12003-12007  Cur minimath xmlns: mini="http://www.w3.org/1998/Math/MathML"                                                                                                                                                                | 3.1  | 93        |
| 16 | display="inline"> <mml:msub><mml:mrow<br> &gt;<mml:mn>2&lt; mml:mn&gt;&lt; mml:msub&gt;&lt; mml:math&gt;Zn(Sn,Ge)Se<mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"&gt;<mml:msub><mml:mrow<br> &gt;<mml:mn>4</mml:mn></mml:mrow<br></mml:msub>and Cu<mml:math< td=""><td>3.2</td><td>90</td></mml:math<></mml:math<br></mml:mn></mml:mrow<br></mml:msub> | 3.2  | 90        |
| 17 | xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow<br>/ Imml:<br/>Alloy Engineering of Defect Properties in Semiconductors: Suppression of Deep Levels in<br/>Transition-Metal Dichalcogenides. Physical Review Letters, 2015, 115, 126806.</mml:mrow<br></mml:msub>                                                                               | 7.8  | 81        |
| 18 | Strain control of magnetism in graphene decorated by transition-metal atoms. Physical Review B, 2011, 84, .                                                                                                                                                                                                                                                                          | 3.2  | 79        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Intrinsic Defect Physics in Indium-based Lead-free Halide Double Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 4391-4396.                                                                                                                                                                                                                                 | 4.6  | 71        |
| 20 | Origin of Reduced Efficiency in Cu(In,Ga)Se\$_2\$ Solar Cells With High Ga Concentration: Alloy Solubility Versus Intrinsic Defects. IEEE Journal of Photovoltaics, 2014, 4, 477-482.                                                                                                                                                                                    | 2.5  | 69        |
| 21 | Chemical Functionalization of Silicene: Spontaneous Structural Transition and Exotic Electronic Properties. Physical Review Letters, 2013, 111, 145502.                                                                                                                                                                                                                  | 7.8  | 68        |
| 22 | Edge stability of boron nitride nanoribbons and its application in designing hybrid BNC structures. Nano Research, 2012, 5, 62-72.                                                                                                                                                                                                                                       | 10.4 | 62        |
| 23 | Highly stable two-dimensional silicon phosphides: Different stoichiometries and exotic electronic properties. Physical Review B, 2015, 91, .                                                                                                                                                                                                                             | 3.2  | 58        |
| 24 | Design of nâ€Type Transparent Conducting Oxides: The Case of Transition Metal Doping in In <sub>2</sub> O <sub>3</sub> . Advanced Electronic Materials, 2018, 4, 1700553.                                                                                                                                                                                                | 5.1  | 58        |
| 25 | Theoretical study of corundum as an ideal gate dielectric material for graphene transistors. Physical Review B, 2011, 84, .                                                                                                                                                                                                                                              | 3.2  | 56        |
| 26 | Widely tunable band gaps of graphdiyne: an ab initio study. Physical Chemistry Chemical Physics, 2014, 16, 8935-8939.                                                                                                                                                                                                                                                    | 2.8  | 56        |
| 27 | xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow<br>/&gt;<mml:mn>2</mml:mn></mml:mrow<br></mml:msub> ZnSnS <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"&gt;<mml:msub><mml:mrow<br>/&gt;<mml:mn>4</mml:mn></mml:mrow<br></mml:msub>surfaces: First-principles study. Physical Review B.</mml:math<br> | 3.2  | 55        |
| 28 | 2013, 88, Intrinsic half-metallic BN–C nanotubes. Applied Physics Letters, 2010, 97, 043115.                                                                                                                                                                                                                                                                             | 3.3  | 54        |
| 29 | Origin of the significantly enhanced optical transitions in layered boron nitride. Physical Review B, 2012, 86, .                                                                                                                                                                                                                                                        | 3.2  | 49        |
| 30 | Prediction of Novel <i>p</i> àê¶ype Transparent Conductors in Layered Double Perovskites: A Firstâ€Principles Study. Advanced Functional Materials, 2018, 28, 1800332.                                                                                                                                                                                                   | 14.9 | 49        |
| 31 | Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism. Nature Communications, 2020, $11$ , $66$ .                                                                                                                                                                                                                               | 12.8 | 49        |
| 32 | Electronic properties of boron and nitrogen doped graphene nanoribbons and its application for graphene electronics. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 845-848.                                                                                                                                                            | 2.1  | 48        |
| 33 | Electronic and Magnetic Properties of Partially Open Carbon Nanotubes. Journal of the American Chemical Society, 2009, 131, 17919-17925.                                                                                                                                                                                                                                 | 13.7 | 47        |
| 34 | Overcoming the Phase Inhomogeneity in Chemically Functionalized Graphene: The Case of Graphene Oxides. Physical Review Letters, 2013, 110, 085501.                                                                                                                                                                                                                       | 7.8  | 47        |
| 35 | Titania Nanoflowers with High Photocatalytic Activity. Journal of the American Ceramic Society, 2006, 89, 2660-2663.                                                                                                                                                                                                                                                     | 3.8  | 43        |
| 36 | Towards graphene nanoribbon-based electronics. Frontiers of Physics in China, 2009, 4, 269-279.                                                                                                                                                                                                                                                                          | 1.0  | 43        |

| #  | Article                                                                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Hexagonal boron nitride and 6H-SiC heterostructures. Applied Physics Letters, 2013, 102, .                                                                                                                                                                                                                           | 3.3  | 43        |
| 38 | Exotic Geometrical and Electronic Properties in Hydrogenated Graphyne. Journal of Physical Chemistry C, 2013, 117, 11960-11967.                                                                                                                                                                                      | 3.1  | 41        |
| 39 | Exceptional Optoelectronic Properties of Hydrogenated Bilayer Silicene. Physical Review X, 2014, 4, .                                                                                                                                                                                                                | 8.9  | 35        |
| 40 | Approaching Charge Separation Efficiency to Unity without Charge Recombination. Physical Review Letters, 2021, 126, 176401.                                                                                                                                                                                          | 7.8  | 35        |
| 41 | Tailoring the Electronic Band Gap of Graphyne. Journal of Physical Chemistry C, 2014, 118, 2463-2468.                                                                                                                                                                                                                | 3.1  | 34        |
| 42 | Anomalous Dirac Plasmons in 1D Topological Electrides. Physical Review Letters, 2019, 123, 206402.                                                                                                                                                                                                                   | 7.8  | 33        |
| 43 | Deep-ultraviolet nonlinear optical crystals by design: A computer-aided modeling blueprint from first principles. Science China Materials, 2020, 63, 1597-1612.                                                                                                                                                      | 6.3  | 33        |
| 44 | First-principles study of electronic and diffusion properties of intrinsic defects in 4H-SiC. Journal of Applied Physics, 2020, $127$ , .                                                                                                                                                                            | 2.5  | 32        |
| 45 | Growth of Metal Phthalocyanine on Deactivated Semiconducting Surfaces Steered by Selective Orbital Coupling. Physical Review Letters, 2015, 115, 096101.                                                                                                                                                             | 7.8  | 30        |
| 46 | Defect Engineering of Grain Boundaries in Leadâ€Free Halide Double Perovskites for Better Optoelectronic Performance. Advanced Functional Materials, 2019, 29, 1805870.                                                                                                                                              | 14.9 | 30        |
| 47 | Hydrogen storage in alkali-metal-decorated organic molecules. Applied Physics Letters, 2008, 93, 063107.                                                                                                                                                                                                             | 3.3  | 28        |
| 48 | Controlling doping in graphene through a SiC substrate: A first-principles study. Physical Review B, 2011, 83, .                                                                                                                                                                                                     | 3.2  | 27        |
| 49 | Emergent Phenomena in Magnetic Two-Dimensional Materials and van der Waals Heterostructures.  ACS Applied Electronic Materials, 2022, 4, 3278-3302. Layered oxide (mml:math                                                                                                                                          | 4.3  | 26        |
| 50 | xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msub><mml:mi mathvariant="normal">B</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>9</mml:mn></mml:msub></mml:mrow> with | 3.2  | 25        |
| 51 | a deep-ultraviolet band gap and a strong and robust second-harmonic generation. Physical Review B, 2 Si>Ab initio Study of beryllium-decorated fullerenes for hydrogen storage. Journal of Applied Physics, 2010, 107, .                                                                                             | 2.5  | 22        |
| 52 | Prediction of room-temperature half-metallicity in layered halide double perovskites. Npj<br>Computational Materials, 2019, 5, .                                                                                                                                                                                     | 8.7  | 19        |
| 53 | Enhanced Ability of Nanostructured Titania Film to Assist Photodegradation of Rhodamine B in Water<br>Through Natural Aging. Journal of the American Ceramic Society, 2007, 90, 283-286.                                                                                                                             | 3.8  | 17        |
| 54 | Deepâ€Ultraviolet Nonlinearâ€Optical vanâ€derâ€Waals Beryllium Borates**. Angewandte Chemie -<br>International Edition, 2021, 60, 16680-16686.                                                                                                                                                                       | 13.8 | 17        |

| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The Half-Metallicity of Zigzag Graphene Nanoribbons with Asymmetric Edge Terminations. Journal of Nanoscience and Nanotechnology, 2010, 10, 5374-5378.                                       | 0.9  | 15        |
| 56 | Quantum Spin Hall Effect and Tunable Spin Transport in As-Graphane. Nano Letters, 2017, 17, 4359-4364.                                                                                       | 9.1  | 15        |
| 57 | A tied Fermi liquid to Luttinger liquid model for nonlinear transport in conducting polymers. Nature Communications, 2021, 12, 58.                                                           | 12.8 | 15        |
| 58 | Beryllium-dihydrogen complexes on nanostructures. Applied Physics Letters, 2010, 96, .                                                                                                       | 3.3  | 14        |
| 59 | Density-independent plasmons for terahertz-stable topological metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                   | 7.1  | 14        |
| 60 | Stability of superconducting Nd0.8Sr0.2NiO2 thin films. Science China: Physics, Mechanics and Astronomy, 2022, 65, .                                                                         | 5.1  | 14        |
| 61 | Period-doubling reconstructions of semiconductor partial dislocations. NPG Asia Materials, 2015, 7, e216-e216.                                                                               | 7.9  | 12        |
| 62 | Multiple localized states and magnetic orderings in partially open zigzag carbon nanotube superlattices: An <i>ab initio</i> study. Journal of Chemical Physics, 2010, 133, 084702.          | 3.0  | 11        |
| 63 | Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors. Chinese Physics Letters, 2021, 38, 087103.                                                          | 3.3  | 9         |
| 64 | Role of interlayer coupling in second harmonic generation in bilayer transition metal dichalcogenides. Physical Review B, 2022, 105, .                                                       | 3.2  | 9         |
| 65 | Comment on "Mechanisms of Postsynthesis Doping of Boron Nitride Nanostructures with Carbon from First-Principles Simulations― Physical Review Letters, 2011, 107, 239601; discussion 239602. | 7.8  | 8         |
| 66 | Crystal Symmetry Engineering in Epitaxial Perovskite Superlattices. Advanced Functional Materials, 2021, 31, 2106466.                                                                        | 14.9 | 7         |
| 67 | Temperature effect on charge-state transition levels of defects in semiconductors. Physical Review B, 2022, 105, .                                                                           | 3.2  | 7         |
| 68 | Relating Gain Degradation to Defects Production in Neutron-Irradiated 4H-SiC Transistors. IEEE Transactions on Nuclear Science, 2021, 68, 312-317.                                           | 2.0  | 6         |
| 69 | Polarizationâ€Drivenâ€Orientation Selective Growth of Singleâ€Crystalline Illâ€Nitride Semiconductors on Arbitrary Substrates. Advanced Functional Materials, 2022, 32, .                    | 14.9 | 6         |
| 70 | Response to Comment on "Prediction of Novel pâ€Type Transparent Conductors in Layered Double Perovskites: A Firstâ€Principles Studyâ€. Advanced Functional Materials, 2020, 30, 2003149.     | 14.9 | 5         |
| 71 | Exotic Structural and Optoelectronic Properties of Layered Halide Double Perovskite Polymorphs. Advanced Functional Materials, 2021, 31, 2008620.                                            | 14.9 | 5         |
| 72 | Alloy Engineering of a Polar (Si,Ge) < sub > 2 < /sub > N < sub > 2 < /sub > O System for Controllable Second Harmonic Performance. Inorganic Chemistry, 2021, 60, 7381-7388.                | 4.0  | 5         |

| #  | Article                                                                                                                                                                                                | IF   | Citations |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Stability and electronic structures of Cu <inf>x</inf> S solar cell absorbers. , 2012, , .                                                                                                             |      | 4         |
| 74 | Deepâ€Ultraviolet Nonlinearâ€Optical vanâ€derâ€Waals Beryllium Borates**. Angewandte Chemie, 2021, 133, 16816-16822.                                                                                   | 2.0  | 4         |
| 75 | ReleasingH2molecules with a partial pressure difference without the use of temperature. Physical<br>Review B, 2010, 82, .                                                                              | 3.2  | 3         |
| 76 | XiangetÂal.Reply:. Physical Review Letters, 2014, 112, 199802.                                                                                                                                         | 7.8  | 3         |
| 77 | Electronic and doping properties of hexagonal silicon carbide with stacking faults induced cubic inclusions. Journal of Applied Physics, 2021, 129, .                                                  | 2.5  | 2         |
| 78 | Functionalizing Two-Dimensional Materials for Energy Applications. , 2020, , 567-603.                                                                                                                  |      | 2         |
| 79 | Structural and electronic properties of Ge-Si, Sn-Si, and Pb-Si dimers on Si(001) from density-functional calculations. Physical Review B, 2009, 79, .                                                 | 3.2  | 1         |
| 80 | Graphene Adsorbed on Corundum Surface: Clean Interface and Band Gap Opening. Materials Research Society Symposia Proceedings, 2012, 1407, 131.                                                         | 0.1  | 0         |
| 81 | Functionalizing Two-Dimensional Materials for Energy Applications. , 2018, , 1-37.                                                                                                                     |      | 0         |
| 82 | Giant enhancement of solid solubility in monolayer alloys by selective orbital coupling. Physical Review B, 2020, $101$ , .                                                                            | 3.2  | 0         |
| 83 | Trends of complete anion substitution on electronic, ferroelectric, and optoelectronic properties of BiFeX3 ( $X = O, S, Se$ , and $Te$ ). AIP Advances, 2021, 11, 115108.                             | 1.3  | 0         |
| 84 | Polarizationâ€Drivenâ€Orientation Selective Growth of Singleâ€Crystalline IIIâ€Nitride Semiconductors on Arbitrary Substrates (Adv. Funct. Mater. 14/2022). Advanced Functional Materials, 2022, 32, . | 14.9 | 0         |