
## Johan Bobacka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8304677/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Anomalous potentiometric response of solid-contact ion-selective electrodes with thin-layer membranes. Sensors and Actuators B: Chemical, 2022, 357, 131416.                                                                   | 7.8  | 7         |
| 2  | Perchlorate Solid-Contact Ion-Selective Electrode Based on Dodecabenzylbambus[6]uril.<br>Chemosensors, 2022, 10, 115.                                                                                                          | 3.6  | 12        |
| 3  | Influence of enzyme immobilization and skin-sensor interface on non-invasive glucose determination<br>from interstitial fluid obtained by magnetohydrodynamic extraction. Biosensors and Bioelectronics,<br>2022, 206, 114123. | 10.1 | 19        |
| 4  | Coulometric ion sensing with Li+-selective LiMn2O4 electrodes. Electrochemistry Communications, 2022, 139, 107302.                                                                                                             | 4.7  | 5         |
| 5  | Long-Time Evaluation of Solid-State Composite Reference Electrodes. Membranes, 2022, 12, 569.                                                                                                                                  | 3.0  | 3         |
| 6  | A review on conjugated polymer-based electronic tongues. Analytica Chimica Acta, 2022, 1221, 340114.                                                                                                                           | 5.4  | 23        |
| 7  | Too small to matter? Physicochemical transformation and toxicity of engineered nTiO2, nSiO2, nZnO, carbon nanotubes, and nAg. Journal of Hazardous Materials, 2021, 404, 124107.                                               | 12.4 | 33        |
| 8  | Life cycle assessment of plastic grocery bags and their alternatives in cities with confined waste management structure: A Singapore case study. Journal of Cleaner Production, 2021, 278, 123956.                             | 9.3  | 63        |
| 9  | Coulometric response of solid-contact anion-sensitive electrodes. Electrochimica Acta, 2021, 367, 137566.                                                                                                                      | 5.2  | 20        |
| 10 | Highly sensitive and stable fructose self-powered biosensor based on a self-charging biosupercapacitor. Biosensors and Bioelectronics, 2021, 176, 112909.                                                                      | 10.1 | 26        |
| 11 | Polymer-Drug Conjugates as Nanotheranostic Agents. Journal of Nanotheranostics, 2021, 2, 63-81.                                                                                                                                | 3.1  | 20        |
| 12 | Sampling of fluid through skin with magnetohydrodynamics for noninvasive glucose monitoring.<br>Scientific Reports, 2021, 11, 7609.                                                                                            | 3.3  | 19        |
| 13 | In situ catalytic reforming of plastic pyrolysis vapors using MSW incineration ashes. Environmental Pollution, 2021, 276, 116681.                                                                                              | 7.5  | 22        |
| 14 | Dependence of the potentiometric response of PEDOT(PSS) on the solubility product of silver salts.<br>Electrochimica Acta, 2021, 390, 138854.                                                                                  | 5.2  | 1         |
| 15 | Environmental footprint of voltammetric sensors based on screen-printed electrodes: An assessment<br>towards "green―sensor manufacturing. Chemosphere, 2021, 278, 130462.                                                      | 8.2  | 32        |
| 16 | Gold-modified paper as microfluidic substrates with reduced biofouling in potentiometric ion sensing. Sensors and Actuators B: Chemical, 2021, 344, 130200.                                                                    | 7.8  | 22        |
| 17 | Potentiometric Carboxylate Sensors Based on Carbazole-Derived Acyclic and Macrocyclic Ionophores.<br>Chemosensors, 2021, 9, 4.                                                                                                 | 3.6  | 7         |
| 18 | Multilayer and Surface Immobilization of EDOT-Decorated Nanocapsules. Langmuir, 2021, 37, 499-508.                                                                                                                             | 3.5  | 1         |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Silver(I)-selective electrodes based on rare earth element double-decker porphyrins. Sensors and<br>Actuators B: Chemical, 2020, 305, 127311.                                                                              | 7.8 | 25        |
| 20 | Real-time monitoring of the dissolution of silver nanoparticles by using a solid-contact Ag+-selective electrode. Analytica Chimica Acta, 2020, 1101, 50-57.                                                               | 5.4 | 17        |
| 21 | Polyterthiophenes Crossâ€Linked with Terpyridyl Metal Complexes for Molecular Architecture of<br>Optically and Electrochemically Tunable Materials. ChemElectroChem, 2020, 7, 4453-4459.                                   | 3.4 | 4         |
| 22 | Design, synthesis and application of carbazole macrocycles in anion sensors. Beilstein Journal of<br>Organic Chemistry, 2020, 16, 1901-1914.                                                                               | 2.2 | 12        |
| 23 | LogP determination for highly lipophilic hydrogen-bonding anion receptor molecules. Analytica<br>Chimica Acta, 2020, 1132, 123-133.                                                                                        | 5.4 | 8         |
| 24 | Solid reference electrode integrated with paper-based microfluidics for potentiometric ion sensing.<br>Sensors and Actuators B: Chemical, 2020, 323, 128680.                                                               | 7.8 | 37        |
| 25 | On-line microcolumn-based dynamic leaching method for investigation of lead bioaccessibility in shooting range soils. Chemosphere, 2020, 256, 127022.                                                                      | 8.2 | 18        |
| 26 | Coulometric response characteristics of solid contact ion-selective electrodes for divalent cations.<br>Journal of Solid State Electrochemistry, 2020, 24, 2975-2983.                                                      | 2.5 | 19        |
| 27 | Electrochemical sensors for real-world applications. Journal of Solid State Electrochemistry, 2020, 24, 2039-2040.                                                                                                         | 2.5 | 28        |
| 28 | EACH (Excellence in Analytical Chemistry), an Erasmus Mundus Joint Programme: progress and success. Analytical and Bioanalytical Chemistry, 2019, 411, 5913-5921.                                                          | 3.7 | 1         |
| 29 | PVC-Based Ion-Selective Electrodes with a Silicone Rubber Outer Coating with Improved Analytical Performance. Analytical Chemistry, 2019, 91, 10524-10531.                                                                 | 6.5 | 57        |
| 30 | Molecularly imprinted conducting polymer for determination of a condensed lignin marker. Sensors and Actuators B: Chemical, 2019, 295, 186-193.                                                                            | 7.8 | 14        |
| 31 | Bioimpedance Sensor Array for Long-Term Monitoring of Wound Healing from Beneath the Primary<br>Dressings and Controlled Formation of H2O2 Using Low-Intensity Direct Current. Sensors, 2019, 19,<br>2505.                 | 3.8 | 32        |
| 32 | Improving the Sensitivity of Solid-Contact Ion-Selective Electrodes by Using Coulometric Signal Transduction. ACS Sensors, 2019, 4, 900-906.                                                                               | 7.8 | 64        |
| 33 | Solidâ€contact Acetateâ€selective Electrode Based on a 1,3â€bis(carbazolyl)ureaâ€ionophore. Electroanalysis,<br>2019, 31, 1061-1066.                                                                                       | 2.9 | 10        |
| 34 | Electrochemically controlled transport of anions across polypyrrole-based membranes. Journal of<br>Membrane Science, 2019, 581, 50-57.                                                                                     | 8.2 | 24        |
| 35 | Gadolinium retention in gliomas and adjacent normal brain tissue: association with tumor contrast<br>enhancement and linear/macrocyclic agents. Neuroradiology, 2019, 61, 535-544.                                         | 2.2 | 25        |
| 36 | Calcium-selective electrodes based on photo-cured polyurethane-acrylate membranes covalently<br>attached to methacrylate functionalized poly(3,4-ethylenedioxythiophene) as solid-contact. Talanta,<br>2018, 186, 279-285. | 5.5 | 30        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Application of terpyridyl ligands to tune the optical and electrochemical properties of a conducting polymer. RSC Advances, 2018, 8, 29505-29512.                                                 | 3.6 | 4         |
| 38 | Capacitive Model for Coulometric Readout of Ion-Selective Electrodes. Analytical Chemistry, 2018, 90, 8700-8707.                                                                                  | 6.5 | 59        |
| 39 | Electrosynthesized polypyrrole/zeolite composites as solid contact in potassium ion-selective electrode. Electrochimica Acta, 2017, 228, 66-75.                                                   | 5.2 | 31        |
| 40 | Influence of phosphate buffer and proteins on the potentiometric response of a polymeric<br>membrane-based solid-contact Pb(II) ion-selective electrode. Electrochimica Acta, 2017, 252, 490-497. | 5.2 | 26        |
| 41 | Paper-based microfluidic sampling and separation of analytes for potentiometric ion sensing. Sensors and Actuators B: Chemical, 2017, 243, 346-352.                                               | 7.8 | 33        |
| 42 | Specific Electrocatalytic Oxidation of Cellulose at Carbon Electrodes Modified by Gold<br>Nanoparticles. ChemCatChem, 2016, 8, 2401-2405.                                                         | 3.7 | 11        |
| 43 | Hand-Held Transistor Based Electrical and Multiplexed Chemical Sensing System. ACS Sensors, 2016, 1, 1423-1431.                                                                                   | 7.8 | 38        |
| 44 | Study of adhesion force between cellulose micro-sphere and cellulose membrane. , 2016, , .                                                                                                        |     | 0         |
| 45 | Tuned ionophore-based bi-membranes for selective transport of target ions. Journal of Membrane<br>Science, 2016, 511, 76-83.                                                                      | 8.2 | 19        |
| 46 | New Signal Readout Principle for Solid-Contact Ion-Selective Electrodes. Analytical Chemistry, 2016,<br>88, 4369-4374.                                                                            | 6.5 | 88        |
| 47 | Influence of Electrode Geometry on the Response of Solidâ€Contact Ionâ€Selective Electrodes when<br>Utilizing a New Coulometric Signal Readout Method. ChemElectroChem, 2016, 3, 2071-2077.       | 3.4 | 31        |
| 48 | Ionâ€selective Electrodes with 3D Nanostructured Conducting Polymer Solid Contact. Electroanalysis,<br>2016, 28, 778-786.                                                                         | 2.9 | 35        |
| 49 | A novel modified terpyridine derivative as a model molecule to study kinetic-based optical spectroscopic ion determination methods. Synthetic Metals, 2016, 219, 101-108.                         | 3.9 | 7         |
| 50 | Biomimetic membranes based on molecularly imprinted conducting polymers as a sensing element for determination of taurine. Electrochimica Acta, 2016, 188, 537-544.                               | 5.2 | 20        |
| 51 | <i>In Situ</i> Potentiometry and Ellipsometry: A Promising Tool to Study Biofouling of Potentiometric Sensors. Analytical Chemistry, 2016, 88, 3009-3014.                                         | 6.5 | 34        |
| 52 | Paper-based potentiometric ion sensors constructed on ink-jet printed gold electrodes. Sensors and Actuators B: Chemical, 2016, 224, 325-332.                                                     | 7.8 | 67        |
| 53 | Adhesive behavior study between cellulose and borosilicate glass using colloidal probe technique. ,<br>2015, , .                                                                                  |     | 1         |
| 54 | Novel Ionâ€ŧoâ€Electron Transduction Principle for Solidâ€Contact ISEs. Electroanalysis, 2015, 27, 591-594.                                                                                       | 2.9 | 71        |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Solid-contact lead(II) ion-selective electrodes for potentiometric determination of lead(II) in presence of high concentrations of Na(I), Cu(II), Cd(II), Zn(II), Ca(II) and Mg(II). Sensors and Actuators B: Chemical, 2015, 218, 25-30.     | 7.8 | 40        |
| 56 | Textile-based sampling for potentiometric determination of ions. Analytica Chimica Acta, 2015, 877, 71-79.                                                                                                                                    | 5.4 | 38        |
| 57 | Transportation and Accumulation of Redox Active Species at the Buried Interfaces of Plasticized Membrane Electrodes. Langmuir, 2015, 31, 10599-10609.                                                                                         | 3.5 | 13        |
| 58 | Paper-based microfluidic sampling for potentiometric determination of ions. Sensors and Actuators B:<br>Chemical, 2015, 207, 933-939.                                                                                                         | 7.8 | 56        |
| 59 | Electrochemical control of the standard potential of solid-contact ion-selective electrodes having a conducting polymer as ion-to-electron transducer. Electrochimica Acta, 2014, 122, 316-321.                                               | 5.2 | 68        |
| 60 | Multicalibrational procedure for more reliable analyses of ions at low analyte concentrations.<br>Electrochimica Acta, 2014, 140, 27-32.                                                                                                      | 5.2 | 23        |
| 61 | Instrument-Free Control of the Standard Potential of Potentiometric Solid-Contact Ion-Selective<br>Electrodes by Short-Circuiting with a Conventional Reference Electrode. Analytical Chemistry, 2014,<br>86, 10540-10545.                    | 6.5 | 63        |
| 62 | Electrospun TiO2 nanofibers decorated Ti substrate for biomedical application. Materials Science and Engineering C, 2014, 45, 56-63.                                                                                                          | 7.3 | 20        |
| 63 | Potentiometric sensing utilizing paper-based microfluidic sampling. Analyst, The, 2014, 139, 2133-2136.                                                                                                                                       | 3.5 | 51        |
| 64 | Electrochemical properties of novel porous carbon based material synthesized from polycyclic aromatic hydrocarbons. Electrochimica Acta, 2013, 105, 384-393.                                                                                  | 5.2 | 4         |
| 65 | Electrochemical synthesis and characterization of poly(3,4-ethylenedioxythiophene) doped with<br>sulfonated calixarenes and sulfonated calixarene–fullerene complexes. Electrochimica Acta, 2013, 107,<br>178-186.                            | 5.2 | 3         |
| 66 | Solid-Contact Ion-Selective Electrodes with Highly Selective Thioamide Derivatives of<br><i>p</i> - <i>tert</i> -Butylcalix[4]arene for the Determination of Lead(II) in Environmental Samples.<br>Analytical Chemistry, 2013, 85, 1555-1561. | 6.5 | 39        |
| 67 | Determination of Lead(II) in Groundwater Using Solidâ€State Lead(II) Selective Electrodes by Tuned<br>Galvanostatic Polarization. Electroanalysis, 2013, 25, 123-131.                                                                         | 2.9 | 33        |
| 68 | Investigation of Protein Binding With All Solidâ€State Ionâ€Selective Electrodes. Electroanalysis, 2013, 25,<br>1887-1894.                                                                                                                    | 2.9 | 6         |
| 69 | Ion Exchange Behavior of Polypyrrole Doped with Large Anions in Electrolytes Containing Mono―and<br>Divalent Mmetal Ions. Electroanalysis, 2013, 25, 991-1004.                                                                                | 2.9 | 13        |
| 70 | A low-cost paper-based inkjet-printed platform for electrochemical analyses. Sensors and Actuators B:<br>Chemical, 2013, 177, 153-162.                                                                                                        | 7.8 | 166       |
| 71 | Durable PEDOT:PSS films obtained from modified water-based inks for electrochemical sensors.<br>Sensors and Actuators B: Chemical, 2013, 181, 694-701.                                                                                        | 7.8 | 39        |
| 72 | Electrochemical and spectroscopic study on thiolation of polyaniline. Electrochimica Acta, 2013, 90, 604-614.                                                                                                                                 | 5.2 | 20        |

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Recovery of nanomolar detection limit of solid-contact lead (II)-selective electrodes by electrode conditioning. Journal of Solid State Electrochemistry, 2012, 16, 2983-2991.                                                               | 2.5  | 30        |
| 74 | Reduced Graphene Oxide Films as Solid Transducers in Potentiometric All-Solid-State Ion-Selective Electrodes. Journal of Physical Chemistry C, 2012, 116, 22570-22578.                                                                       | 3.1  | 103       |
| 75 | Impedance study of thiolated polyaniline. Journal of Solid State Electrochemistry, 2012, 16, 2783-2789.                                                                                                                                      | 2.5  | 7         |
| 76 | Disposable solid-contact ion-selective electrodes for environmental monitoring of lead with ppb limit-of-detection. Electrochimica Acta, 2012, 73, 93-97.                                                                                    | 5.2  | 46        |
| 77 | Mediatorless sugar/oxygen enzymatic fuel cells based on gold nanoparticle-modified electrodes.<br>Biosensors and Bioelectronics, 2012, 31, 219-225.                                                                                          | 10.1 | 159       |
| 78 | Direct Electron Transfer of <i>Trametes hirsuta</i> Laccase in a Dual-Layer Architecture of Poly(3,4-ethylenedioxythiophene) Films. Journal of Physical Chemistry C, 2011, 115, 5919-5929.                                                   | 3.1  | 20        |
| 79 | Tuned galvanostatic polarization of solid-state lead-selective electrodes for lowering of the detection limit. Analytica Chimica Acta, 2011, 707, 1-6.                                                                                       | 5.4  | 33        |
| 80 | Electrochemically controlled ion transport across polypyrrole/multi-walled carbon nanotube composite membranes. Synthetic Metals, 2011, 161, 1906-1914.                                                                                      | 3.9  | 24        |
| 81 | Impedance study of the ion-to-electron transduction process for carbon cloth as solid-contact material in potentiometric ion sensors. Electrochimica Acta, 2011, 56, 10683-10687.                                                            | 5.2  | 25        |
| 82 | Comparison of Multiâ€walled Carbon Nanotubes and Poly(3â€octylthiophene) as Ionâ€ŧoâ€Electron<br>Transducers in Allâ€Solidâ€State Potassium Ionâ€Selective Electrodes. Electroanalysis, 2011, 23, 1352-1358.                                 | 2.9  | 63        |
| 83 | Ionic Liquidâ€Based, Liquidâ€Junctionâ€Free Reference Electrode. Electroanalysis, 2011, 23, 1881-1890.                                                                                                                                       | 2.9  | 51        |
| 84 | Simultaneous monitoring of the transport of anions and cations across polypyrrole based composite membranes. Electrochimica Acta, 2011, 56, 3507-3515.                                                                                       | 5.2  | 17        |
| 85 | Development of miniature all-solid-state potentiometric sensing system. Sensors and Actuators B:<br>Chemical, 2010, 146, 199-205.                                                                                                            | 7.8  | 80        |
| 86 | Electrochemical Behaviour of Poly(benzopyrene) Films Doped with Eriochrome Black T as a<br>Pb <sup>2+</sup> ensitive Sensors. Electroanalysis, 2010, 22, 2794-2800.                                                                          | 2.9  | 25        |
| 87 | Transport of metal ions across an electrically switchable cation exchange membrane based on polypyrrole doped with a sulfonated calix[6]arene. Journal of Membrane Science, 2010, 354, 162-170.                                              | 8.2  | 40        |
| 88 | The effect of counter ions and substrate material on the growth and morphology of poly(3,4-ethylenedioxythiophene) films: Towards the application of enzyme electrode construction in biofuel cells. Synthetic Metals, 2010, 160, 1373-1381. | 3.9  | 34        |
| 89 | A study on lowering the detection limit with solid-state lead-selective electrodes. Talanta, 2010, 83, 436-440.                                                                                                                              | 5.5  | 25        |
| 90 | Diagnostic of functionality of polymer membrane – based ion selective electrodes by impedance spectroscopy. Analytical Methods, 2010, 2, 1490.                                                                                               | 2.7  | 43        |

| #   | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Ionâ€Selective Organic Electrochemical Junction Transistors Based on Poly(3,4â€ethylenedioxythiophene)<br>Doped with Poly(styrene sulfonate). Electroanalysis, 2009, 21, 472-479.                                                  | 2.9  | 33        |
| 92  | Solid ontact Reference Electrodes Based on Lipophilic Salts. Electroanalysis, 2009, 21, 1955-1960.                                                                                                                                 | 2.9  | 60        |
| 93  | Determination of Calcium with Ion-Selective Electrode in Black Liquor from a Kraft Pulping Process.<br>Electroanalysis, 2009, 21, 2014-2021.                                                                                       | 2.9  | 6         |
| 94  | Electropolymerization of <i>N</i> â€hydroxyethylcarbazole on carbon fiber microelectrodes. Journal of<br>Applied Polymer Science, 2009, 113, 136-142.                                                                              | 2.6  | 6         |
| 95  | New polyacrylate-based lead(II) ion-selective electrodes. Mikrochimica Acta, 2009, 164, 293-297.                                                                                                                                   | 5.0  | 21        |
| 96  | Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carbon nanotubes as ion-to-electron transducer<br>in polymer membrane-based potassium ion-selective electrodes. Journal of Electroanalytical<br>Chemistry, 2009, 633, 246-252. | 3.8  | 112       |
| 97  | Electropolymerization of N-methylanthranilic acid and spectroelectrochemical characterization of the formed film. Synthetic Metals, 2009, 159, 96-102.                                                                             | 3.9  | 6         |
| 98  | Ion exchange behaviour and charge compensation mechanism of polypyrrole in electrolytes containing mono-, di- and trivalent metal ions. Synthetic Metals, 2009, 159, 2590-2598.                                                    | 3.9  | 32        |
| 99  | Transduction Mechanism of Carbon Nanotubes in Solid-Contact Ion-Selective Electrodes. Analytical<br>Chemistry, 2009, 81, 676-681.                                                                                                  | 6.5  | 211       |
| 100 | Soluble semiconducting poly(3-octylthiophene) as a solid-contact material in all-solid-state chloride sensors. Sensors and Actuators B: Chemical, 2008, 134, 878-886.                                                              | 7.8  | 30        |
| 101 | Electrochemical characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with sulfonated thiophenes. Electrochimica Acta, 2008, 53, 3755-3762.                                                                           | 5.2  | 24        |
| 102 | Potentiometric Ion Sensors. Chemical Reviews, 2008, 108, 329-351.                                                                                                                                                                  | 47.7 | 813       |
| 103 | Chapter 4 Ion sensors with conducting polymers as ion-to-electron transducers. Comprehensive Analytical Chemistry, 2007, 49, 73-86.                                                                                                | 1.3  | 8         |
| 104 | Procedure 4 Determination of Ca(II) in wood pulp using a calcium-selective electrode with poly(3,4-ethylenedioxythiophene) as ion-to-electron transducer. Comprehensive Analytical Chemistry, 2007, 49, e25-e28.                   | 1.3  | 2         |
| 105 | All-solid-state chloride sensors based on electronically conducting, semiconducting and insulating polymer membranes. Sensors and Actuators B: Chemical, 2007, 127, 545-553.                                                       | 7.8  | 43        |
| 106 | Response mechanism of potentiometric Ag+ sensor based on poly(3,4-ethylenedioxythiophene) doped with silver hexabromocarborane. Journal of Electroanalytical Chemistry, 2006, 593, 219-226.                                        | 3.8  | 54        |
| 107 | Conducting Polymer-Based Solid-State Ion-Selective Electrodes. Electroanalysis, 2006, 18, 7-18.                                                                                                                                    | 2.9  | 365       |
| 108 | Microcavity Based Solid-Contact Ion-Selective Microelectrodes. Electroanalysis, 2006, 18, 1372-1378.                                                                                                                               | 2.9  | 57        |

| #   | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Potentiometric Ag+ Sensors Based on Conducting Polymers: A Comparison between<br>Poly(3,4-ethylenedioxythiophene) and Polypyrrole Doped with Sulfonated Calixarenes.<br>Electroanalysis, 2005, 17, 1609-1615.                                  | 2.9  | 59        |
| 110 | Synthesis, Characterization, and Complexation of Tetraarylborates with Aromatic Cations and Their<br>Use in Chemical Sensors. Chemistry - A European Journal, 2005, 11, 2071-2080.                                                             | 3.3  | 28        |
| 111 | Potentiometric sensors based on poly(3,4-ethylenedioxythiophene) (PEDOT) doped with sulfonated calix[4]arene and calix[4]resorcarenes. Journal of Solid State Electrochemistry, 2005, 9, 312-319.                                              | 2.5  | 49        |
| 112 | Potentiometric sensors for Ag+ based on poly(3-octylthiophene) (POT). Journal of Solid State<br>Electrochemistry, 2005, 9, 865-873.                                                                                                            | 2.5  | 36        |
| 113 | Electrochemical synthesis and characterization of poly(3,4-ethylenedioxythiophene) in ionic liquids<br>with bulky organic anions. Journal of Solid State Electrochemistry, 2004, 8, 809.                                                       | 2.5  | 50        |
| 114 | All-Solid-State Chloride Sensors with Poly(3-Octylthiopene) Matrix and Trihexadecylmethylammonium<br>Chlorides as an Ion Exchanger Salt. Electroanalysis, 2004, 16, 379-385.                                                                   | 2.9  | 24        |
| 115 | EIS study of the redox reaction of Fe(CN)63â^'/4â^' at poly(3,4-ethylenedioxythiophene) electrodes:<br>influence of dc potential and cOx:cRed ratio. Journal of Electroanalytical Chemistry, 2004, 572,<br>309-316.                            | 3.8  | 36        |
| 116 | Solution-cast films of poly(3,4-ethylenedioxythiophene) as ion-to-electron transducers in all-solid-state ion-selective electrodes. Sensors and Actuators B: Chemical, 2004, 97, 182-189.                                                      | 7.8  | 116       |
| 117 | Influence of anionic additive on Hg2+ interference on Ag+-ISEs based on [2.2.2]p,p,p-cyclophane as neutral carrier. Talanta, 2004, 63, 135-138.                                                                                                | 5.5  | 23        |
| 118 | Small-volume radial flow cell for all-solid-state ion-selective electrodes. Talanta, 2004, 62, 57-63.                                                                                                                                          | 5.5  | 34        |
| 119 | Potentiometric Ion Sensors Based on Conducting Polymers. Electroanalysis, 2003, 15, 366-374.                                                                                                                                                   | 2.9  | 258       |
| 120 | Potentiometric Ion Sensors Based on Conducting Polymers. ChemInform, 2003, 34, no.                                                                                                                                                             | 0.0  | 0         |
| 121 | Carbonate ion-selective electrode with reduced interference from salicylate. Biosensors and Bioelectronics, 2003, 18, 245-253.                                                                                                                 | 10.1 | 23        |
| 122 | Selectivity of Lithium Electrodes:Â Correlation with Ionâ^'Ionophore Complex Stability Constants and with Interfacial Exchange Current Densities. Analytical Chemistry, 2002, 74, 518-527.                                                     | 6.5  | 50        |
| 123 | Solid-contact ion-selective electrodes for aromatic cations based on π-coordinating soft carriers.<br>Talanta, 2002, 58, 341-349.                                                                                                              | 5.5  | 34        |
| 124 | Silver Ion-Selective Electrodes Based on π-Coordinating Ionophores Without Heteroatoms.<br>Electroanalysis, 2002, 14, 1353-1357.                                                                                                               | 2.9  | 24        |
| 125 | Influence of oxygen and carbon dioxide on the electrochemical stability of poly(3,4-ethylenedioxythiophene) used as ion-to-electron transducer in all-solid-state ion-selective electrodes. Sensors and Actuators B: Chemical, 2002, 82, 7-13. | 7.8  | 138       |
| 126 | All-Solid-State Ag+-ISE Based on [2.2.2]p,p,p-Cyclophane. Electroanalysis, 2001, 13, 723-726.                                                                                                                                                  | 2.9  | 33        |

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Determination of Na+, K+, Ca2+, and Clâ^ lons in Wood Pulp Suspension Using Ion-Selective Electrodes.<br>Electroanalysis, 2001, 13, 1119-1124.                                              | 2.9 | 18        |
| 128 | Equilibrium potential of potentiometric ion sensors under steady-state current by using current-reversal chronopotentiometry. Journal of Electroanalytical Chemistry, 2001, 509, 27-30.     | 3.8 | 55        |
| 129 | Coupled Redox and pH Potentiometric Responses of Electrodes Coated with Polypyrrole. Analytical Letters, 2000, 33, 1339-1360.                                                               | 1.8 | 9         |
| 130 | Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions. Journal of Electroanalytical Chemistry, 2000, 489, 17-27.         | 3.8 | 375       |
| 131 | Characterization of a single-piece all-solid-state lithium-selective electrode based on soluble conducting polyaniline. Analytica Chimica Acta, 1999, 385, 163-173.                         | 5.4 | 56        |
| 132 | Plasticizer-free all-solid-state potassium-selective electrode based on poly(3-octylthiophene) and valinomycin. Analytica Chimica Acta, 1999, 385, 195-202.                                 | 5.4 | 81        |
| 133 | All-Solid-State Chloride-Selective Electrode Based on Poly(3-octylthiophene) and Tridodecylmethylammonium Chloride. Electroanalysis, 1999, 11, 821-824.                                     | 2.9 | 40        |
| 134 | Potential Stability of All-Solid-State Ion-Selective Electrodes Using Conducting Polymers as<br>Ion-to-Electron Transducers. Analytical Chemistry, 1999, 71, 4932-4937.                     | 6.5 | 581       |
| 135 | Study on soluble polypyrrole as a component in all-solid-state ion-sensors. Electrochimica Acta, 1998, 43, 3503-3509.                                                                       | 5.2 | 35        |
| 136 | Metallic and non-metallic redox response of conducting polymers. Journal of Electroanalytical Chemistry, 1997, 430, 243-252.                                                                | 3.8 | 31        |
| 137 | Electron transfer at conducting polymer film electrodes: mechanism and kinetics of ferrocene oxidation at poly(3-octylthiophene). Journal of Electroanalytical Chemistry, 1997, 427, 63-69. | 3.8 | 37        |
| 138 | Electrosynthesis of polypyrrole in iodide solution. Film growth, redox behaviour and potentiometric response. Analytica Chimica Acta, 1997, 355, 217-225.                                   | 5.4 | 12        |
| 139 | Impedance spectroscopic study on single-piece all-solid-state calcium-selective electrode based on polyaniline. Analyst, The, 1996, 121, 1823.                                              | 3.5 | 35        |
| 140 | Single-piece all-solid-state ion-selective electrode. Analytical Chemistry, 1995, 67, 3819-3823.                                                                                            | 6.5 | 173       |
| 141 | Mechanism of ionic and redox sensitivity of p-type conducting polymers. Journal of Electroanalytical Chemistry, 1994, 368, 23-31.                                                           | 3.8 | 105       |
| 142 | Mechanism of ionic and redox sensitivity of p-type conducting polymers. Journal of Electroanalytical<br>Chemistry, 1994, 368, 33-41.                                                        | 3.8 | 112       |
| 143 | All solid-state poly(vinyl chloride) membrane ion-selective electrodes with poly(3-octylthiophene)<br>solid internal contact. Analyst, The, 1994, 119, 1985.                                | 3.5 | 165       |
| 144 | Electrochemical impedance spectroscopy of cobalt(II)-hexacyanoferrate film modified electrodes.<br>Electrochimica Acta, 1993, 38, 379-385.                                                  | 5.2 | 41        |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Electrochemical study on the polypyrrole-polyaniline bilayers. Synthetic Metals, 1993, 55, 1477-1482.                                                                                                                | 3.9 | 18        |
| 146 | Potentiometric response of poly(3-octylthiophene), poly(3-methylthiophene) and polythiophene in aqueous solutions. Talanta, 1993, 40, 1437-1444.                                                                     | 5.5 | 41        |
| 147 | Electrochemical study of poly(3-octylthiophene) film electrodes. Impedance of the polymer film semiconductor-electrolyte interface. Electrochimica Acta, 1992, 37, 1759-1765.                                        | 5.2 | 33        |
| 148 | Electrochemical study of poly(3-octylthiophene) film electrodes I. Electrolyte effects on the<br>voltammetric characteristics of the polymer. Three states of the polymer film. Synthetic Metals, 1991,<br>44, 9-19. | 3.9 | 43        |
| 149 | Electrochemical study of poly(3-octylthiophene) film electrodes II. Reversible redox/conductivity state switching. Impedance study. Synthetic Metals, 1991, 44, 21-34.                                               | 3.9 | 27        |