
Nadja S Magalhaes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8304570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Analysis of a Proposed Experiment to Measure the Speed of Gravity in Short Distances. Advances in High Energy Physics, 2022, 2022, 1-8.	1.1	2
2	Angular momentum conservation and core superfluid dynamics for the pulsar J1734 â€3333. Astronomische Nachrichten, 2021, 342, 255-258.	1.2	1
3	A method to design mechanical transducers for resonantâ€mass gravitational wave detectors. Astronomische Nachrichten, 2021, 342, 123-127.	1.2	0
4	The challenge of calibrating a <scp>laserâ€interferometric</scp> gravitational wave detector. Astronomische Nachrichten, 2021, 342, 115-122.	1.2	2
5	The influence of rotation deceleration on the shape of a pulsar may reflect on the star's braking index. Astronomische Nachrichten, 2021, 342, 222-226.	1.2	0
6	On the Dilution Refrigerator Thermal Connection for the SCHENBERG Gravitational Wave Detector. Brazilian Journal of Physics, 2020, 50, 541-547.	1.4	16
7	The laser gravitational compass: A spheroidal interferometric gravitational observatory. International Journal of Modern Physics A, 2020, 35, 2040020.	1.5	0
8	Using pulsar's braking indices to estimate changes in their moments of inertia with age-related considerations. Journal of Physics: Conference Series, 2019, 1291, 012012.	0.4	0
9	On the Cabling Seismic Isolation for the Microwave Transducers of the Schenberg Detector. Brazilian Journal of Physics, 2019, 49, 133-139.	1.4	24
10	Relating braking indices of young pulsars to the dynamics of superfluid cores. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 025-025.	5.4	5
11	Mass density and size estimates for spiral galaxies using general relativity. Astrophysics and Space Science, 2017, 362, 1.	1.4	3
12	A Model for the Braking Indices of Pulsars. International Journal of Modern Physics Conference Series, 2017, 45, 1760036.	0.7	1
13	Braking Indices of Pulsars Obtained in the Presence of an Effective Force. International Journal of Modern Physics Conference Series, 2017, 45, 1760037.	0.7	0
14	Bayesian Inference Applied to Pulsar's Models. International Journal of Modern Physics Conference Series, 2017, 45, 1760038.	0.7	0
15	Computation of Schenberg response function by using finite element modelling. Journal of Physics: Conference Series, 2016, 716, 012016.	0.4	0
16	How to overcome limitations of analytic solutions when determining the direction of a gravitational wave using experimental data: an example with the Schenberg detector. Journal of Physics: Conference Series, 2016, 716, 012019.	0.4	0
17	Thermal connection and vibrational isolation: an elegant solution for two problems. Journal of Physics: Conference Series, 2016, 716, 012023.	0.4	0
18	Braking indices of pulsars obtained in the presence of an effective force. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3993-3996.	4.4	10

NADJA S MAGALHAES

#	Article	IF	CITATIONS
19	On the Massive Antenna Suspension System in the Brazilian Gravitational Wave Detector SCHENBERG. Brazilian Journal of Physics, 2016, 46, 308-315.	1.4	32
20	Overcoming analytic solution limitations in gravitational wave direction determination. Classical and Quantum Gravity, 2015, 32, 095006.	4.0	1
21	Progress and challenges in advanced ground-based gravitational-wave detectors. General Relativity and Gravitation, 2014, 46, 1.	2.0	2
22	Concepts and research for future detectors. General Relativity and Gravitation, 2014, 46, 1.	2.0	2
23	On the detectability of gravitational waves emited by millisecond pulsars in 47 Tucanae. , 2013, , .		0
24	Status Report of the Schenberg Gravitational Wave Antenna. Journal of Physics: Conference Series, 2012, 363, 012003.	0.4	31
25	PREDICTING RANGES FOR PULSARS' BRAKING INDICES. Astrophysical Journal, 2012, 755, 54.	4.5	34
26	Optimization of Mechanical Impedance Matchers for Parametric Transducers in Gravitational Wave Spherical Detectors. Journal of Physics: Conference Series, 2012, 363, 012009.	0.4	0
27	Searching for monochromatic signals in the ALLEGRO gravitational wave detector data. Journal of Physics: Conference Series, 2010, 228, 012007.	0.4	3
28	A physical criterion for validating the method used to design mechanical impedance matchers for Mario Schenberg's transducers. Journal of Physics: Conference Series, 2010, 228, 012011.	0.4	23
29	Data Analysis of Monochromatic Signals from ALLECRO GW Detector. Nuclear Physics, Section B, Proceedings Supplements, 2010, 199, 353-356.	0.4	1
30	SEARCH FOR MONOCHROMATIC SIGNALS USING DATA FROM THE ALLEGRO GRAVITATIONAL WAVE DETECTOR. International Journal of Modern Physics D, 2010, 19, 1293-1297.	2.1	1
31	Astrophysics from data analysis of spherical gravitational wave detectors. General Relativity and Gravitation, 2008, 40, 183-190.	2.0	4
32	The Schenberg spherical gravitational wave detector: the first commissioning runs. Classical and Quantum Gravity, 2008, 25, 114042.	4.0	30
33	Solution of the inverse problem in spherical gravitational wave detectors using a model with independent bars. Physical Review D, 2008, 78, .	4.7	3
34	Studying a new shape for mechanical impedance matchers in Mario Schenberg transducers. Journal of Physics: Conference Series, 2006, 32, 319-322.	0.4	27
35	The Brazilian gravitational wave detector Mario Schenberg: status report. Classical and Quantum Gravity, 2006, 23, S239-S244.	4.0	44
36	Resonant transducers for spherical gravitational wave detectors. Brazilian Journal of Physics, 2005, 35, 1201-1203.	1.4	32

NADJA S MAGALHAES

#	Article	IF	CITATIONS
37	Challenges in signal analysis of resonant-mass gravitational wave detectors. Brazilian Journal of Physics, 2005, 35, 1195-1200.	1.4	1
38	The Brazilian gravitational wave detector Mario Schenberg: progress and plans. Classical and Quantum Gravity, 2005, 22, S209-S214.	4.0	34
39	Can lightning be a noise source for a spherical gravitational wave antenna?. Physical Review D, 2005, 72, .	4.7	Ο
40	Ultra-low phase noise 10 GHz oscillator to pump the parametric transducers of the Mario Schenberg gravitational wave detector. Classical and Quantum Gravity, 2004, 21, S1215-S1219.	4.0	27
41	A noise model for the Brazilian gravitational wave detector ÂMario SchenbergÂ. Classical and Quantum Gravity, 2004, 21, S1107-S1111.	4.0	41
42	The Brazilian spherical detector: progress and plans. Classical and Quantum Gravity, 2004, 21, S457-S463.	4.0	52
43	Response of the Brazilian gravitational wave detector to signals from a black hole ringdown. Classical and Quantum Gravity, 2004, 21, S827-S832.	4.0	14
44	Transducers for the Brazilian gravitational wave detector â€~Mario Schenberg'. Classical and Quantum Gravity, 2002, 19, 1961-1965.	4.0	42
45	Response of spherical gravitational wave antenna modes to high-energy cosmic ray particles. Classical and Quantum Gravity, 2002, 19, 1955-1960.	4.0	0
46	The status of the Brazilian spherical detector. Classical and Quantum Gravity, 2002, 19, 1949-1953.	4.0	23
47	The gravitational wave detector "Mario Schenberg": status of the project. Brazilian Journal of Physics, 2002, 32, 866-868.	1.4	27
48	Cosmic-ray noise and gravitational wave antennas at the quantum limit. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 457, 175-179.	1.6	2
49	Excitation of the modes of a spherical antenna for gravitational waves by high energy particles. Physical Review D, 2001, 64, .	4.7	2
50	The first phase of the Brazilian graviton project: The MaÌrio Schenberg detector. AIP Conference Proceedings, 2000, , .	0.4	5
51	Perspectives on transducers for spherical gravitational wave detectors. AIP Conference Proceedings, 2000, , .	0.4	2
52	Possible Resonator Configurations for the Spherical Gravitational Wave Antenna. General Relativity and Gravitation, 1997, 29, 1511-1525.	2.0	44
53	A Geometric Method for Location of Gravitational Wave Sources. Astrophysical Journal, 1997, 475, 462-468.	4.5	49
54	Determination of astrophysical parameters from the spherical gravitational wave detector data. Monthly Notices of the Royal Astronomical Society, 1995, 274, 670-678.	4.4	64