
Tomasz J Nowakowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8303948/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A single-cell atlas of the normal and malformed human brain vasculature. Science, 2022, 375, eabi7377.	6.0	129
2	Nests of dividing neuroblasts sustain interneuron production for the developing human brain. Science, 2022, 375, eabk2346.	6.0	13
3	Endoluminal Biopsy for Molecular Profiling of Human Brain Vascular Malformations. Neurology, 2022, 98, .	1.5	16
4	DynaMorph: self-supervised learning of morphodynamic states of live cells. Molecular Biology of the Cell, 2022, 33, mbcE21110561.	0.9	18
5	Individual human cortical progenitors can produce excitatory and inhibitory neurons. Nature, 2022, 601, 397-403.	13.7	73
6	Single-cell delineation of lineage and genetic identity in the mouse brain. Nature, 2022, 601, 404-409.	13.7	93
7	The development and evolution of inhibitory neurons in primate cerebrum. Nature, 2022, 603, 871-877.	13.7	58
8	Microglial GPR56 is the molecular target of maternal immune activation-induced parvalbumin-positive interneuron deficits. Science Advances, 2022, 8, eabm2545.	4.7	14
9	Fate mapping of neural stem cell niches reveals distinct origins of human cortical astrocytes. Science, 2022, 376, 1441-1446.	6.0	25
10	Tropism of SARS-CoV-2 for human cortical astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	77
11	Parallel inÂvivo analysis of large-effect autism genes implicates cortical neurogenesis and estrogen in risk and resilience. Neuron, 2021, 109, 788-804.e8.	3.8	54
12	Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nature Neuroscience, 2021, 24, 584-594.	7.1	244
13	Rare deleterious mutations of HNRNP genes result in shared neurodevelopmental disorders. Genome Medicine, 2021, 13, 63.	3.6	50
14	The CHD8/CHD7/Kismet family links blood-brain barrier glia and serotonin to ASD-associated sleep defects. Science Advances, 2021, 7, .	4.7	24
15	UCSC Cell Browser: visualize your single-cell data. Bioinformatics, 2021, 37, 4578-4580.	1.8	105
16	Distinct nuclear compartment-associated genome architecture in the developing mammalian brain. Nature Neuroscience, 2021, 24, 1235-1242.	7.1	28
17	Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. Cell Stem Cell, 2021, 28, 2153-2166.e6.	5.2	98
18	Single-cell epigenomics reveals mechanisms of human cortical development. Nature, 2021, 598, 205-213.	13.7	154

Tomasz J Nowakowski

#	Article	IF	CITATIONS
19	An atlas of cortical arealization identifies dynamic molecular signatures. Nature, 2021, 598, 200-204.	13.7	132
20	Picroscope: low-cost system for simultaneous longitudinal biological imaging. Communications Biology, 2021, 4, 1261.	2.0	23
21	Endovascular Biopsy of Vertebrobasilar Aneurysm in Patient With Polyarteritis Nodosa. Frontiers in Neurology, 2021, 12, 697105.	1.1	9
22	Light-weight electrophysiology hardware and software platform for cloud-based neural recording experiments. Journal of Neural Engineering, 2021, 18, 066004.	1.8	7
23	The Expanding Cell Diversity of the Brain Vasculature. Frontiers in Physiology, 2020, 11, 600767.	1.3	35
24	Are Organoids Ready for Prime Time?. Cell Stem Cell, 2020, 27, 361-365.	5.2	24
25	A Chromatin Accessibility Atlas of the Developing Human Telencephalon. Cell, 2020, 182, 754-769.e18.	13.5	69
26	Evolutionary Expansion of Human Cerebellar Germinal Zones. Trends in Neurosciences, 2020, 43, 75-77.	4.2	8
27	Cell stress in cortical organoids impairs molecular subtype specification. Nature, 2020, 578, 142-148.	13.7	387
28	Medulloblastoma Arises from the Persistence of a Rare and Transient Sox2+ Granule Neuron Precursor. Cell Reports, 2020, 31, 107511.	2.9	35
29	Revealing architectural order with quantitative label-free imaging and deep learning. ELife, 2020, 9, .	2.8	56
30	Disruptive mutations in TANC2 define a neurodevelopmental syndrome associated with psychiatric disorders. Nature Communications, 2019, 10, 4679.	5.8	43
31	A recipe book for cell types in the human brain. Nature, 2019, 573, 36-37.	13.7	3
32	Development and Arealization of the Cerebral Cortex. Neuron, 2019, 103, 980-1004.	3.8	241
33	Human brain development through the lens of cerebral organoid models. Brain Research, 2019, 1725, 146470.	1.1	22
34	Mafb and c-Maf Have Prenatal Compensatory and Postnatal Antagonistic Roles in Cortical Interneuron Fate and Function. Cell Reports, 2019, 26, 1157-1173.e5.	2.9	44
35	Neuroserpin expression during human brain development and in adult brain revealed by immunohistochemistry and single cell <scp>RNA</scp> sequencing. Journal of Anatomy, 2019, 235, 543-554.	0.9	28
36	Automated four-dimensional long term imaging enables single cell tracking within organotypic brain slices to study neurodevelopment and degeneration. Communications Biology, 2019, 2, 155.	2.0	28

#	Article	IF	CITATIONS
37	Establishing Cerebral Organoids as Models of Human-Specific Brain Evolution. Cell, 2019, 176, 743-756.e17.	13.5	423
38	Multimodal Single-Cell Analysis Reveals Physiological Maturation in the Developing Human Neocortex. Neuron, 2019, 102, 143-158.e7.	3.8	61
39	Evolution of New miRNAs and Cerebro-Cortical Development. Annual Review of Neuroscience, 2018, 41, 119-137.	5.0	27
40	An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nature Genetics, 2018, 50, 727-736.	9.4	235
41	Regulation of cell-type-specific transcriptomes by microRNA networks during human brain development. Nature Neuroscience, 2018, 21, 1784-1792.	7.1	121
42	Identification of cell types in a mouse brain single-cell atlas using low sampling coverage. BMC Biology, 2018, 16, 113.	1.7	15
43	Single-cell sequencing paints diverse pictures of the brain. Nature, 2018, 563, 38-39.	13.7	3
44	Transcriptional fates of human-specific segmental duplications in brain. Genome Research, 2018, 28, 1566-1576.	2.4	54
45	Human-Specific NOTCH2NL Genes Affect Notch Signaling and Cortical Neurogenesis. Cell, 2018, 173, 1356-1369.e22.	13.5	366
46	The Psychiatric Cell Map Initiative: A Convergent Systems Biological Approach to Illuminating Key Molecular Pathways in Neuropsychiatric Disorders. Cell, 2018, 174, 505-520.	13.5	108
47	Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell, 2017, 20, 435-449.e4.	5.2	463
48	The impact of microRNAs on transcriptional heterogeneity and gene co-expression across single embryonic stem cells. Nature Communications, 2017, 8, 14126.	5.8	28
49	Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science, 2017, 358, 1318-1323.	6.0	717
50	Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proceedings of the United States of America, 2016, 113, 14408-14413.	3.3	432
51	Singleâ€cell sequencing maps gene expression to mutational phylogenies in <scp>PDGF</scp> ―and <scp>EGF</scp> â€driven gliomas. Molecular Systems Biology, 2016, 12, 889.	3.2	91
52	Expression Analysis Highlights AXL as a Candidate Zika Virus Entry Receptor in Neural Stem Cells. Cell Stem Cell, 2016, 18, 591-596.	5.2	483
53	Single-cell analysis of long non-coding RNAs in the developing human neocortex. Genome Biology, 2016, 17, 67.	3.8	295
54	Transformation of the Radial Glia Scaffold Demarcates Two Stages of Human Cerebral Cortex Development. Neuron, 2016, 91, 1219-1227.	3.8	264

Tomasz J Nowakowski

#	Article	IF	CITATIONS
55	A Primate IncRNA Mediates Notch Signaling during Neuronal Development by Sequestering miRNA. Neuron, 2016, 90, 1174-1188.	3.8	115
56	Molecular Identity of Human Outer Radial Glia during Cortical Development. Cell, 2015, 163, 55-67.	13.5	698
57	Radial glia require PDGFD–PDGFRβ signalling in human but not mouse neocortex. Nature, 2014, 515, 264-268.	13.7	145
58	Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nature Biotechnology, 2014, 32, 1053-1058.	9.4	850
59	MicroRNA-92b regulates the development of intermediate cortical progenitors in embryonic mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7056-7061.	3.3	99
60	Loss of functional Dicer in mouse radial glia cell-autonomously prolongs cortical neurogenesis. Developmental Biology, 2013, 382, 530-537.	0.9	22
61	The expression and activity of \hat{l}^2 -catenin in the thalamus and its projections to the cerebral cortex in the mouse embryo. BMC Neuroscience, 2012, 13, 20.	0.8	9
62	Functional Dicer Is Necessary for Appropriate Specification of Radial Glia during Early Development of Mouse Telencephalon. PLoS ONE, 2011, 6, e23013.	1.1	58
63	Novel lines of Pax6-/- embryonic stem cells exhibit reduced neurogenic capacity without loss of viability. BMC Neuroscience, 2010, 11, 26.	0.8	12
64	01-P027 Investigating the roles of dicer1 endoribonuclease in embryonic organogenesis of mouse retina. Mechanisms of Development, 2009, 126, S58-S59.	1.7	0
65	Time-Multiplexed Laguerre-Gaussian holographic optical tweezers for biological applications. Optics Express, 2006, 14, 3065.	1.7	49