Masood Hamadanian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8303494/publications.pdf

Version: 2024-02-01

106 papers 2,713 citations

201385 27 h-index 197535 49 g-index

106 all docs

106 docs citations

106 times ranked 3464 citing authors

#	Article	IF	CITATIONS
1	Sonochemical synthesis and characterization of aluminum tungsten oxide nanoparticle and study its impact on the growth of microalga. Arabian Journal of Chemistry, 2022, 15, 103671.	2.3	2
2	A simple hydrothermal route for the preparation of novel Na–Y–W nano-oxides and their application in dye degradation. RSC Advances, 2022, 12, 4913-4923.	1.7	1
3	Effect of sol–gel synthesized Al _{0.1} Zr _{0.9} O _{1.95} nanoparticles and PVP on PVDF-based separators in lithium-ion battery performance: The RSM study. Journal of Elastomers and Plastics, 2021, 53, 241-257.	0.7	10
4	Molecular dynamics simulation and thermo-mechanical characterization for optimization of three-phase epoxy/TiO2/SiO2 nano-composites. Polymer Testing, 2021, 93, 106890.	2.3	49
5	Toxicity of Nd ₂ WO ₆ nanoparticles to the microalga <i>Dunaliella salina</i> synthesis of nanoparticles and investigation of their impact on microalgae. RSC Advances, 2021, 11, 27283-27291.	1.7	3
6	Toxicity evaluation and preparation of CoWO4 nanoparticles towards microalga Dunaliella salina. Environmental Science and Pollution Research, 2021, 28, 36314-36325.	2.7	3
7	A New Approach for the Leaching of Palladium from Spent Pd/C Catalyst in HCl–H2O2 System. Protection of Metals and Physical Chemistry of Surfaces, 2021, 57, 297-305.	0.3	2
8	Epoxy/Polyethylene Glycol/TiO2: Design, Fabrication and Investigation of Mechanical Properties, Thermal Cycling Fatigue and Antibacterial Activity. Journal of Polymers and the Environment, 2021, 29, 3867-3877.	2.4	3
9	A Semi-analytical and Experimental Approach Using Molecular Dynamic Simulation for Thermo-mechanical Properties of Surface Functionalized Epoxy/Polyurethane/MWCNT/ZnMoO4 Nanocomposites. Fibers and Polymers, 2021, 22, 2306-2315.	1.1	2
10	Controllable synthesis and characterization of Mg ₂ SiO ₄ nanostructures <i>via</i> a simple hydrothermal route using carboxylic acid as capping agent and their photocatalytic performance for photodegradation of azo dyes. RSC Advances, 2021, 11, 21588-21599.	1.7	11
11	Molecular Structure, Spectroscopic, Local and Global Reactivity Descriptors and NBO Analysis of C ₃₂ H ₁₂ : A New Buckybowl and Sub-Fullerene Structure. Polycyclic Aromatic Compounds, 2020, 40, 693-704.	1.4	5
12	Synergistic effect between CuCr ₂ O ₄ nanoparticles and plasticizer on mechanical properties of EP/PU/CuCr ₂ O ₄ nanocomposites: Experimental approach and molecular dynamics simulation. Journal of Applied Polymer Science, 2020, 137, 49425.	1.3	7
13	Toxic effects of Fe2WO6 nanoparticles towards microalga Dunaliella salina: Sonochemical synthesis nanoparticles and investigate its impact on the growth. Chemosphere, 2020, 258, 127348.	4.2	14
14	The modified supercritical media for one-pot biodiesel production from Chlorella vulgaris using photochemically-synthetized SrTiO3 nanocatalyst. Renewable Energy, 2020, 160, 176-184.	4.3	18
15	Tensile strength and elongation of \$\$hbox {NBR/PVC/CuFe}_{mathrm {2}}hbox {O}_{mathrm {4}}\$\$ magnetic nanocomposites: a response surface methodology optimization. Bulletin of Materials Science, 2020, 43, 1.	0.8	7
16	MgCr2O4 and MgCr2O4/Ag nanostructures: Facile size-controlled synthesis and their photocatalytic performance for destruction of organic contaminants― Composites Part B: Engineering, 2019, 175, 107077.	5.9	25
17	Optimize epoxy matrix with RSM/CCD method and influence of multi-wall carbon nanotube on mechanical properties of epoxy/polyurethane. Mechanics of Materials, 2019, 138, 103154.	1.7	24
18	Optimization of thermo-mechanical and antibacterial properties of epoxy/polyethylene glycol/MWCNTs nano-composites using response surface methodology and investigation thermal cycling fatigue. Polymer Testing, 2019, 78, 105946.	2.3	15

#	Article	IF	CITATIONS
19	Visible-Light Induced Photodegradation of Methyl Orange via Palladium Nanoparticles Anchored to Chrome and Nitrogen Doped TiO2 Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1457-1465.	1.9	10
20	Sol–gel preparation of metal and nonmetal-codoped TiO2–graphene nanophotocatalyst for photodegradation of MO under UV and visible-light irradiation. lonics, 2019, 25, 1869-1878.	1.2	34
21	Supercritical methanol for one put biodiesel production from chlorella vulgaris microalgae in the presence of CaO/TiO2 nano-photocatalyst and subcritical water. Biomass and Bioenergy, 2019, 123, 34-40.	2.9	58
22	Improvement mechanical and antibacterial properties of epoxy by polyethylene glycol and Ag/CuO nanoparticles. Polymer Composites, 2019, 40, 3393-3401.	2.3	17
23	Investigation and Optimization of Mechanical Properties of Nitrile-Butadiene Rubber/Polyvinyl Chloride/NiFe2O4 Nanocomposite. Fibers and Polymers, 2019, 20, 2247-2253.	1.1	2
24	Cost-effective fabrication of perdurable electrodeposited TiO2 nano-layers on stainless steel electrodes applicable to photocatalytic degradation of methylene blue. Research on Chemical Intermediates, 2019, 45, 4275-4286.	1.3	4
25	Aspartic acid functionalized PEGylated MSN@GO hybrid as an effective and sustainable nano-system for in-vitro drug delivery. Advances in Medical Sciences, 2018, 63, 257-264.	0.9	15
26	Dy2O3/CuO nanocomposites: microwave assisted synthesis and investigated photocatalytic properties. Journal of Materials Science: Materials in Electronics, 2018, 29, 1238-1245.	1.1	24
27	Reverse atom transfer radical random copolymerization of styrene and methyl methacrylate in the presence of diatomite nanoplatelets. Polymers for Advanced Technologies, 2018, 29, 424-432.	1.6	9
28	Synthesis of Au/SiO2 Nanoparticles with Highly Porous Structure as a pH-Sensitive Targeting Drug Carrier. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 187-194.	1.9	1
29	Normal spinel CdCr2O4 and CdCr2O4/Ag nanocomposite as novel photocatalysts, for degradation of water contaminates. Separation and Purification Technology, 2018, 195, 37-49.	3.9	18
30	Central composite design (CCD) optimized synthesis of Fe3O4@SiO2@AgCl/Ag/Ag2S as a novel magnetic nano-photocatalyst for catalytic degradation of organic pollutants. Journal of Environmental Chemical Engineering, 2018, 6, 7284-7293.	3.3	16
31	Preparation and Characterization of Fe3O4@SiO2@TiO2 and Ag/Fe3O4@SiO2@TiO2 Nanocomposites for Water Treatment: Process Optimization by Response Surface Methodology. Journal of Electronic Materials, 2018, 47, 7484-7496.	1.0	16
32	Physicochemical and Mechanical Properties of Epoxy/Polyurethane/Nickel Manganite Nanocomposite: A Response Surface Methodology/Central Composite Designs Study. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 2689-2700.	1.9	8
33	Facile size-controlled preparation of highly photocatalytically active ZnCr2O4 and ZnCr2O4/Ag nanostructures for removal of organic contaminants. Journal of Colloid and Interface Science, 2017, 500, 276-284.	5.0	56
34	Effect of Carbon Nanotube Loading on Mechanical and Thermal Properties of Pure and Pyrolyzed Polyacrylonitrile Aerogel. Journal of Nanoscience and Nanotechnology, 2017, 17, 2959-2969.	0.9	1
35	Magnetically separable Fe3O4@SiO2@TiO2 nanostructures supported by neodymium(III): fabrication and enhanced photocatalytic activity for degradation of organic pollution. Journal of Materials Science: Materials in Electronics, 2017, 28, 14271-14281.	1.1	33
36	Studying the effects of the configuration of doped Al atoms on the conductive properties of boron nitride nanotube using density functional theory. Chemical Physics Letters, 2017, 669, 29-37.	1.2	6

#	Article	IF	CITATIONS
37	Hydrothermal synthesis, characterization and photodegradation of organic pollutants of CoCr2O4/Ag nanostructure and thermal stability of epoxy acrylate nanocomposite. Advanced Powder Technology, 2017, 28, 2756-2765.	2.0	33
38	Graphene-supported C–N–S tridoped TiO2 photo-catalyst with improved band gap and charge transfer properties. Journal of Materials Science: Materials in Electronics, 2017, 28, 15637-15646.	1.1	33
39	Increment of activity of Pd(OH) ₂ /C catalyst in order to improve the yield of high performance 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (HNIW). Inorganic and Nano-Metal Chemistry, 2017, 47, 1489-1494.	0.9	7
40	Facile synthesis and characterization of CdTiO3 nanoparticles by Pechini sol–gel method. Journal of Materials Science: Materials in Electronics, 2017, 28, 14965-14973.	1.1	53
41	Study of Deactivation of Pd(OH)2/C Catalyst in Reductive Debenzylation of Hexabenzylhexaazaisowurtzitane. Propellants, Explosives, Pyrotechnics, 2017, 42, 213-219.	1.0	14
42	New method for assessment of melting points of organic azides using their molecular structures. Fluid Phase Equilibria, 2016, 427, 27-34.	1.4	6
43	The modification of benzene adsorption on zigzag single-wall carbon nanotubes by carboxylation. Materials Research Express, 2016, 3, 125010.	0.8	5
44	Preparation and characterization of Fe ₃ 0 ₄ @SiO ₂ @TiO ₂ @Pd and Fe ₃ O ₄ @SiO ₂ @TiO ₂ @Pd–Ag nanocomposites and their properties of the properties of	1.7	48
45	6, 78043-78052. Variation of the electronic properties of zigzag boron nitride nanotubes by Al-doping: a DFT study. Molecular Physics, 2016, 114, 2936-2943.	0.8	2
46	A New Method for Assessment of Performing Mechanical Works of Energetic Compounds by the Cylinder Test. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 1086-1090.	0.6	2
47	Synthesis and Characterization of Hydrophilic and Semiconductor Cadmium Chromite Nanostructures. Journal of Electronic Materials, 2016, 45, 5739-5745.	1.0	7
48	Ab initio and TD-DFT study of the structural and spectroscopic properties of C ₃₀ H ₁₀ as a new buckybowl. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 577-587.	1.0	1
49	Reliable method for safety assessment of melting points of energetic compounds. Chemical Engineering Research and Design, 2016, 103, 10-22.	2.7	9
50	Facile synthesis and characterization of nickel molybdate nanorods as an effective photocatalyst by co-precipitation method. Journal of Materials Science: Materials in Electronics, 2016, 27, 10244-10251.	1.1	34
51	Considering the effect of a ligand as new complexing agent in the characteristics of TiO2 nanoparticles. Journal of Molecular Liquids, 2016, 215, 467-471.	2.3	9
52	Photo-degradation of methylene blue: photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites. Journal of Materials Science: Materials in Electronics, 2016, 27, 4800-4809.	1.1	125
53	Nanocrystalline TiO2 films containing sulfur and gold: Synthesis, characterization and application to immobilize and direct electrochemistry of cytochrome c. Applied Surface Science, 2016, 363, 604-612.	3.1	9
54	Enhanced charge carrier efficiency and solar light-induced photocatalytic activity of TiO2 nanoparticles through doping of silver nanoclusters and C–N–S nonmetals. Journal of Industrial and Engineering Chemistry, 2016, 35, 132-139.	2.9	36

#	Article	IF	Citations
55	Synthesis and characterization of cerium molybdate nanostructures via a simple solvothermal method and investigation of their photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2016, 27, 7342-7352.	1.1	10
56	Band gap and Schottky barrier engineered photocatalyst with promising solar light activity for water remediation. RSC Advances, 2016, 6, 15678-15685.	1.7	10
57	Synthesis of CoFe2O4 nanoparticles and investigation of the temperature, surfactant, capping agent and time effects on the size and magnetic properties. Journal of Materials Science: Materials in Electronics, 2016, 27, 4972-4980.	1.1	44
58	Magnetic nanoscale core–shell structured Fe ₃ O ₄ @ <scp>I</scp> -proline: an efficient, reusable and eco-friendly nanocatalyst for diastereoselective synthesis of fulleropyrrolidines. New Journal of Chemistry, 2016, 40, 3289-3299.	1.4	19
59	Synthesis of cysteine, cobalt and copper-doped TiO 2 nanophotocatalysts with excellent visible-light-induced photocatalytic activity. Materials Science in Semiconductor Processing, 2016, 41, 168-176.	1.9	43
60	Reliable prediction of the condensed (solid or liquid) phase enthalpy of formation of organic energetic materials at 298ÂK through their molecular structures. Fluid Phase Equilibria, 2016, 408, 248-258.	1.4	33
61	Preparation of nanocrystalline praseodymium oxide with different shapes via a simple thermal decomposition route. Journal of Materials Science: Materials in Electronics, 2016, 27, 998-1006.	1.1	29
62	Enhanced Efficiency of Dye–sensitized Solar Cells Based on Bulk Synthesized TiO ₂ Nanorods Annealed at Different Temperatures. Journal of the Chinese Chemical Society, 2015, 62, 811-816.	0.8	7
63	Facile synthesis of GeO2 nanostructures and measurement of photocatalytic, photovoltaic and photoluminescence properties. Journal of Materials Science: Materials in Electronics, 2015, 26, 6386-6394.	1.1	10
64	Morphology and electrical properties of multi-walled carbon nanotube/carbon aerogel prepared by using polyacrylonitrile as precursor. RSC Advances, 2015, 5, 49944-49952.	1.7	10
65	Study of N-benzylidene derivatives synthesized as corrosion inhibitors for copper in HCl solution. RSC Advances, 2015, 5, 23357-23366.	1.7	19
66	Praseodymium oxide nanostructures: novel solvent-less preparation, characterization and investigation of their optical and photocatalytic properties. RSC Advances, 2015, 5, 33792-33800.	1.7	147
67	In,V-codoped TiO2 nanocomposite prepared via a photochemical reduction technique as a novel high efficiency visible-light-driven nanophotocatalyst. RSC Advances, 2015, 5, 78128-78135.	1.7	10
68	Improvement of electronic properties of carboxylated zigzag single wall carbon nanotubes by interaction with benzene derivatives. Current Applied Physics, 2015, 15, 1593-1598.	1.1	1
69	Theoretical investigation of the heat of formation and detonation performance on 1,1,3,5,5-pentanitro-1,5-bis(difluoramino)-3-azapentane substituted. Journal of Structural Chemistry, 2014, 55, 831-836.	0.3	2
70	Improving Thermal and Optical Properties of Biodegradable Poly(ethyl vinyl ether-co-maleic) Tj ETQq0 0 0 rgBT /C Polymerization. Polymer-Plastics Technology and Engineering, 2014, 53, 1283-1289.	Overlock 1 1.9	0 Tf 50 147 T 6
71	INVESTIGATION OF ADSORPTION AND INHIBITIVE PROPERTIES OF SOME DIAMINE COMPOUNDS ON MILD STEEL CORROSION IN HYDROCHLORIC ACID SOLUTION. Chemical Engineering Communications, 2014, 201, 1077-1095.	1.5	3
72	Improved Conversion Efficiency in Dye-Sensitized Solar Cells Based on Electrospun TiCl ₄ -Treated TiO ₂ Nanorod Electrodes. International Journal of Green Energy, 2014, 11, 364-375.	2.1	7

#	Article	IF	CITATIONS
73	Preparation of Ionomer Poly (Ethyl Vinyl Ether- Maleic Anhydride) Block Copolymer via In Situ Radical Polymerization Incorporated by ZnO and MgO Nanoparticles. Polymer-Plastics Technology and Engineering, 2014, 53, 504-512.	1.9	2
74	Modification of the electronic properties of zigzag (nÂ=Â5–10) and armchair (nÂ=Â3, 5) carbon nanotubes by K atom adsorption. Structural Chemistry, 2014, 25, 1005-1012.	1.0	5
75	Photocatalyst Cr-doped titanium oxide nanoparticles: Fabrication, characterization, and investigation of the effect of doping on methyl orange dye degradation. Materials Science in Semiconductor Processing, 2014, 21, 161-166.	1.9	28
76	Uses of new natural dye photosensitizers in fabrication of high potential dye-sensitized solar cells (DSSCs). Materials Science in Semiconductor Processing, 2014, 27, 733-739.	1.9	76
77	Modification of conductive properties of (10,0) zigzag single-walled carbon nanotubes (SWCNT) by alkali metals absorption. Journal of Molecular Structure, 2014, 1076, 49-54.	1.8	10
78	Density functional study of Al/N co-doped (10,0) zigzag single-walled carbon nanotubes as CO sensor. Computational Materials Science, 2014, 82, 497-502.	1.4	23
79	Novel high potential visible-light-active photocatalyst of CNT/Mo, S-codoped TiO2 hetero-nanostructure. Applied Surface Science, 2014, 317, 302-311.	3.1	27
80	The structural and electronic properties of (10,0) zigzag Single-Wall Carbon Nanotubes modified by thiophene groups. Chemical Physics Letters, 2013, 584, 177-181.	1.2	2
81	Photodeposition-assisted synthesis of novel nanoparticulate In, S-codoped TiO2 powders with high visible light-driven photocatalytic activity. Applied Surface Science, 2013, 285, 121-129.	3.1	20
82	Structural, morphological and photocatalytic characterisations of Ag-coated anatase TiO2fabricated by the sol–gel dip-coating method. Journal of Experimental Nanoscience, 2013, 8, 901-912.	1.3	10
83	High performance dye-sensitized solar cells (DSSCs) achieved via electrophoretic technique by optimizing of photoelectrode properties. Materials Science in Semiconductor Processing, 2013, 16, 1352-1359.	1.9	32
84	Density functional theory study of the local molecular properties of acetamide derivatives as anti-HIV drugs. Research in Pharmaceutical Sciences, 2013, 8, 285-97.	0.6	8
85	Fabrication and characterization of dye-sensitized solar cells using electrospun TiO2nanofibre as a solar light harvesting layer. International Journal of Sustainable Energy, 2012, 31, 277-289.	1.3	2
86	Influence of PVDF concentration on the morphology, surface roughness, crystalline structure, and filtration separation properties of semicrystalline phase inversion polymeric membranes. Desalination and Water Treatment, 2012, 46, 96-106.	1.0	32
87	The Role of Solution and Coagulation Temperatures in Crystalline Structure, Morphology, Roughness, Pore Diameter Distribution, and Separation Properties of Nanoporous Membranes Fabricated Via Phase Inversion. Separation Science and Technology, 2012, 47, 1866-1873.	1.3	8
88	Band gap engineering of TiO2 nanostructure-based dye solar cells (DSCs) fabricated via electrophoresis. Surface and Coatings Technology, 2012, 206, 4531-4538.	2.2	27
89	Dependence of energy conversion efficiency of dye-sensitized solar cells on the annealing temperature of TiO2 nanoparticles. Materials Science in Semiconductor Processing, 2012, 15, 371-379.	1.9	18
90	Computational study of super cell Al-substituted single-walled carbon nanotubes as CO sensor. Computational Materials Science, 2012, 58, 45-50.	1.4	18

#	Article	IF	CITATIONS
91	Efficient visible-light-induced photocatalytic degradation of MO on the Cr–nanocrystalline titania–S. Applied Surface Science, 2011, 257, 10639-10644.	3.1	26
92	Investigation on the energy conversion of dye-sensitized solar cells based on TiO2 core/shell using metal oxide as a barrier layer. Applied Solar Energy (English Translation of Geliotekhnika), 2011, 47, 281-288.	0.2	5
93	Synthesis and characterization of Fe,S-codoped TiO2 nanoparticles: Application in degradation of organic water pollutants. Desalination, 2011, 281, 319-324.	4.0	57
94	Density functional study of super cell N-doped (10,0) zigzag single-walled carbon nanotubes as CO sensor. Structural Chemistry, 2011, 22, 1205-1211.	1.0	31
95	Electrospun titanium dioxide nanofibers: Fabrication, properties and its application in photo-oxidative degradation of methyl orange (MO). Fibers and Polymers, 2011, 12, 880-885.	1.1	26
96	Sol-gel preparation and characterization of Co/TiO2 nanoparticles: Application to the degradation of methyl orange. Journal of the Iranian Chemical Society, 2010, 7, S52-S58.	1.2	134
97	Synthesis, characterization and effect of calcination temperature on phase transformation and photocatalytic activity of Cu,S-codoped TiO2 nanoparticles. Applied Surface Science, 2010, 256, 1837-1844.	3.1	147
98	Structure and electronic properties of Na-doped adamantane crystals. Computational and Theoretical Chemistry, 2010, 961, 48-54.	1.5	2
99	Density functional B3LYP and B3PW91 studies of the properties of four cyclic organodiboranes with tetramethylene fragments. Journal of Structural Chemistry, 2010, 51, 437-443.	0.3	7
100	Preparation and characterization of S-doped TiO2 nanoparticles, effect of calcination temperature and evaluation of photocatalytic activity. Materials Chemistry and Physics, 2009, 116, 376-382.	2.0	122
101	Electrochemical and theoretical investigation on the corrosion inhibition of mild steel by thiosalicylaldehyde derivatives in hydrochloric acid solution. Corrosion Science, 2008, 50, 2172-2181.	3.0	411
102	Deposition of Magnetite Nanoparticles in Activated Carbons and Preparation of Magnetic Activated Carbons. AIP Conference Proceedings, 2007, , .	0.3	10
103	Full Non-rigid Group of Sponge and Pina. Journal of Mathematical Chemistry, 2007, 41, 315-326.	0.7	1
104	Full non-rigid group theory and symmetry of melamine. Journal of the Iranian Chemical Society, 2005, 2, 135-139.	1.2	5
105	Group theory for tetraammineplatinum(II) withC 2v andC 4v point group in the non-rigid system. Journal of Applied Mathematics and Computing, 2004, 14, 289-303.	1.2	7
106	The full nonrigid group theory for trimethylamine. International Journal of Mathematics and Mathematical Sciences, 2003, 2003, 2701-2706.	0.3	2