
Victor B Busov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8303304/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CRISPR/Cas9â€mediated single and biallelic knockout of poplar STERILE APETALA (PopSAP) leads to complete reproductive sterility. Plant Biotechnology Journal, 2021, 19, 23-25.	8.3	16
2	EARLY BUD-BREAK 1 and EARLY BUD-BREAK 3 control resumption of poplar growth after winter dormancy. Nature Communications, 2021, 12, 1123.	12.8	50
3	Overexpression of a developing xylem cDNA library in transgenic poplar generates high mutation rate specific to wood formation. Plant Biotechnology Journal, 2020, 18, 1434-1443.	8.3	3
4	Plant Development: Dual Roles of Poplar SVL inÂVegetative Bud Dormancy. Current Biology, 2019, 29, R68-R70.	3.9	26
5	Improved Heat FT Induction Leads to Earlier and More Prolific Flowering in Poplar. Journal of Botanical Research, 2019, 1, .	0.2	2
6	Manipulation of Growth and Architectural Characteristics in Trees for Increased Woody Biomass Production. Frontiers in Plant Science, 2018, 9, 1505.	3.6	8
7	Gene network analysis of poplar root transcriptome in response to drought stress identifies a PtaJAZ3PtaRAP2.6-centered hierarchical network. PLoS ONE, 2018, 13, e0208560.	2.5	13
8	A genetic network mediating the control of bud break in hybrid aspen. Nature Communications, 2018, 9, 4173.	12.8	163
9	Poplar <i>Ptab<scp>ZIP</scp>1â€like</i> enhances lateral root formation and biomass growth under drought stress. Plant Journal, 2017, 89, 692-705.	5.7	64
10	Recursive random forest algorithm for constructing multilayered hierarchical gene regulatory networks that govern biological pathways. PLoS ONE, 2017, 12, e0171532.	2.5	38
11	BIG LEAF is a regulator of organ size and adventitious root formation in poplar. PLoS ONE, 2017, 12, e0180527.	2.5	17
12	A network of genes associated with poplar root development in response to low nitrogen. Plant Signaling and Behavior, 2016, 11, e1214792.	2.4	5
13	Gene dosage effects and signatures of purifying selection in lateral organ boundaries domain (LBD) genes LBD1 and LBD18. Plant Systematics and Evolution, 2016, 302, 433-445.	0.9	3
14	EARLY BUD-BREAK1 (EBB1) defines a conserved mechanism for control of bud-break in woody perennials. Plant Signaling and Behavior, 2016, 11, e1073873.	2.4	35
15	A systems biology approach identifies new regulators of poplar root development under low nitrogen. Plant Journal, 2015, 84, 335-346.	5.7	36
16	Recombinant DNA modification of gibberellin metabolism alters growth rate and biomass allocation in Populus. Tree Genetics and Genomes, 2015, 11, 1.	1.6	10
17	Roles of Gibberellin Catabolism and Signaling in Growth and Physiological Response to Drought and Short-Day Photoperiods in Populus Trees. PLoS ONE, 2014, 9, e86217.	2.5	96
18	EARLY BUD-BREAK 1 (<i>EBB1</i>) is a regulator of release from seasonal dormancy in poplar trees. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10001-10006.	7.1	127

VICTOR B BUSOV

#	Article	IF	CITATIONS
19	Pop's Pipes: poplar gene expression data analysis pipelines. Tree Genetics and Genomes, 2014, 10, 1093-1101.	1.6	15
20	Nitrogen deprivation promotes <i><scp>P</scp>opulus</i> root growth through global transcriptome reprogramming and activation of hierarchical genetic networks. New Phytologist, 2013, 200, 483-497.	7.3	69
21	DR5 as a reporter system to study auxin response in Populus. Plant Cell Reports, 2013, 32, 453-463.	5.6	48
22	Identification, characterization of an AP2/ERF transcription factor that promotes adventitious, lateral root formation in Populus. Planta, 2013, 238, 271-282.	3.2	92
23	ptr-MIR169 is a posttranscriptional repressor of PtrHAP2 during vegetative bud dormancy period of aspen (Populus tremuloides) trees. Biochemical and Biophysical Research Communications, 2013, 431, 512-518.	2.1	30
24	Genetic networks involved in poplar root response to low nitrogen. Plant Signaling and Behavior, 2013, 8, e27211.	2.4	17
25	Green Revolution Trees: Semidwarfism Transgenes Modify Gibberellins, Promote Root Growth, Enhance Morphological Diversity, and Reduce Competitiveness in Hybrid Poplar Â. Plant Physiology, 2012, 160, 1130-1144.	4.8	44
26	PHOTOPERIOD RESPONSE 1 (PHOR1)-like Genes Regulate Shoot/root Growth, Starch Accumulation, and Wood Formation in Populus. Journal of Experimental Botany, 2012, 63, 5623-5634.	4.8	11
27	The <i>AINTEGUMENTA LIKE1</i> Homeotic Transcription Factor <i>PtAIL1</i> Controls the Formation of Adventitious Root Primordia in Poplar Â. Plant Physiology, 2012, 160, 1996-2006.	4.8	118
28	Transgenic <i>Populus</i> Trees for Forest Products, Bioenergy, and Functional Genomics. Critical Reviews in Plant Sciences, 2011, 30, 415-434.	5.7	52
29	Gibberellinâ€associated cisgenes modify growth, stature and wood properties in <i>Populus</i> . Plant Biotechnology Journal, 2011, 9, 162-178.	8.3	45
30	<i>SHORT INTERNODES</i> â€like genes regulate shoot growth and xylem proliferation in <i>Populus</i> . New Phytologist, 2011, 191, 678-691.	7.3	29
31	Activation tagging is an effective gene tagging system in Populus. Tree Genetics and Genomes, 2011, 7, 91-101.	1.6	38
32	Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering. Planta, 2011, 234, 1285-1298.	3.2	41
33	Boundary genes in regulation and evolution of secondary growth. Plant Signaling and Behavior, 2011, 6, 688-690.	2.4	10
34	Members of the LATERAL ORGAN BOUNDARIES DOMAIN Transcription Factor Family Are Involved in the Regulation of Secondary Growth in <i>Populus</i> Â. Plant Cell, 2010, 22, 3662-3677.	6.6	114
35	Gibberellins Regulate Lateral Root Formation in <i>Populus</i> through Interactions with Auxin and Other Hormones Â. Plant Cell, 2010, 22, 623-639.	6.6	221
36	Transformation as a Tool for Genetic Analysis in Populus. , 2010, , 113-133.		7

VICTOR B BUSOV

#	Article	IF	CITATIONS
37	Genes for control of plant stature and form. New Phytologist, 2008, 177, 589-607.	7.3	140
38	Enhancer trapping in woody plants: Isolation of the ET304 gene encoding a putative AT-hook motif transcription factor and characterization of the expression patterns conferred by its promoter in transgenic Populus and Arabidopsis. Plant Science, 2006, 171, 206-216.	3.6	15
39	Transgenic modification of gai or rgl1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus. Planta, 2006, 224, 288-299.	3.2	130
40	Genetic transformation: a powerful tool for dissection of adaptive traits in trees. New Phytologist, 2005, 167, 9-18.	7.3	65
41	Insertional mutagenesis in Populus: relevance and feasibility. Tree Genetics and Genomes, 2005, 1, 135-142.	1.6	20
42	Poplar genome sequence: functional genomics in an ecologically dominant plant species. Trends in Plant Science, 2004, 9, 49-56.	8.8	281
43	Activation Tagging of a Dominant Gibberellin Catabolism Gene (GA 2-oxidase) from Poplar That Regulates Tree Stature. Plant Physiology, 2003, 132, 1283-1291.	4.8	244