Erwann Arc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8303297/publications.pdf Version: 2024-02-01

FDWANN ADC

#	Article	IF	CITATIONS
1	Does oxygen affect ageing mechanisms of <i>Pinus densiflora</i> seeds? A matter of cytoplasmic physical state. Journal of Experimental Botany, 2022, 73, 2631-2649.	2.4	18
2	Acquisition of desiccation tolerance in Haematococcus pluvialis requires photosynthesis and coincides with lipid and astaxanthin accumulation. Algal Research, 2022, 64, 102699.	2.4	11
3	Metabolite Profiling in Green Microalgae with Varying Degrees of Desiccation Tolerance. Microorganisms, 2022, 10, 946.	1.6	3
4	Advances in understanding Norway spruce natural resistance to needle bladder rust infection: transcriptional and secondary metabolites profiling. BMC Genomics, 2022, 23, .	1.2	2
5	Repeated colonization of alpine habitats by <i>Arabidopsis arenosa</i> viewed through freezing resistance and ice management strategies. Plant Biology, 2022, 24, 939-949.	1.8	5
6	How dry is dry? Molecular mobility in relation to thallus water content in a lichen. Journal of Experimental Botany, 2021, 72, 1576-1588.	2.4	24
7	AtFAHD1a: A New Player Influencing Seed Longevity and Dormancy in Arabidopsis?. International Journal of Molecular Sciences, 2021, 22, 2997.	1.8	9
8	Adaptation to Aquatic and Terrestrial Environments in Chlorella vulgaris (Chlorophyta). Frontiers in Microbiology, 2020, 11, 585836.	1.5	13
9	Pre-akinete formation in Zygnema sp. from polar habitats is associated with metabolite re-arrangement. Journal of Experimental Botany, 2020, 71, 3314-3322.	2.4	25
10	Metatranscriptomic and metabolite profiling reveals vertical heterogeneity within a <i>Zygnema</i> green algal mat from Svalbard (High Arctic). Environmental Microbiology, 2019, 21, 4283-4299.	1.8	31
11	Abscisic acid-determined seed vigour differences do not influence redox regulation during ageing. Biochemical Journal, 2019, 476, 965-974.	1.7	18
12	Redox poise and metabolite changes in bread wheat seeds are advanced by priming with hot steam. Biochemical Journal, 2018, 475, 3725-3743.	1.7	25
13	An Integrated "Multi-Omics―Comparison of Embryo and Endosperm Tissue-Specific Features and Their Impact on Rice Seed Quality. Frontiers in Plant Science, 2017, 8, 1984.	1.7	48
14	Formation of lipid bodies and changes in fatty acid composition upon pre-akinete formation in Arctic and Antarctic <i>Zygnema</i> (Zygnematophyceae, Streptophyta) strains. FEMS Microbiology Ecology, 2016, 92, fiw096.	1.3	57
15	Glutathione redox state, tocochromanols, fatty acids, antioxidant enzymes and protein carbonylation in sunflower seed embryos associated with after-ripening and ageing. Annals of Botany, 2015, 116, 669-678.	1.4	58
16	Side-effects of domestication: cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts. BMC Plant Biology, 2014, 14, 1599.	1.6	68
17	Dynamic Proteomics Emphasizes the Importance of Selective mRNA Translation and Protein Turnover during Arabidopsis Seed Germination. Molecular and Cellular Proteomics, 2014, 13, 252-268.	2.5	143
18	Interplay between protein carbonylation and nitrosylation in plants. Proteomics, 2013, 13, 568-578.	1.3	83

ERWANN ARC

#	Article	IF	CITATIONS
19	Nitric oxide implication in the control of seed dormancy and germination. Frontiers in Plant Science, 2013, 4, 346.	1.7	101
20	ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Frontiers in Plant Science, 2013, 4, 63.	1.7	220
21	Cold Stratification and Exogenous Nitrates Entail Similar Functional Proteome Adjustments during <i>Arabidopsis</i> Seed Dormancy Release. Journal of Proteome Research, 2012, 11, 5418-5432.	1.8	46
22	Reboot the system thanks to protein postâ€translational modifications and proteome diversity: How quiescent seeds restart their metabolism to prepare seedling establishment. Proteomics, 2011, 11, 1606-1618.	1.3	100
23	Proteomics and Posttranslational Proteomics of Seed Dormancy and Germination. Methods in Molecular Biology, 2011, 773, 215-236.	0.4	18
24	Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant Journal, 2009, 60, 795-804.	2.8	341