
Arturo Martinez-Rodrigo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8302901/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrodermal Activity Sensor for Classification of Calm/Distress Condition. Sensors, 2017, 17, 2324.	2.1	131
2	Smart environment architecture for emotion detection and regulation. Journal of Biomedical Informatics, 2016, 64, 55-73.	2.5	112
3	A Review on Nonlinear Methods Using Electroencephalographic Recordings for Emotion Recognition. IEEE Transactions on Affective Computing, 2021, 12, 801-820.	5.7	69
4	Application of Entropy-Based Metrics to Identify Emotional Distress from Electroencephalographic Recordings. Entropy, 2016, 18, 221.	1.1	56
5	Multiscale Entropy Analysis for Recognition of Visually Elicited Negative Stress From EEG Recordings. International Journal of Neural Systems, 2019, 29, 1850038.	3.2	43
6	Estimation of Mental Distress from Photoplethysmography. Applied Sciences (Switzerland), 2018, 8, 69.	1.3	42
7	Symbolic Analysis of Brain Dynamics Detects Negative Stress. Entropy, 2017, 19, 196.	1.1	39
8	Deep Support Vector Machines for the Identification of Stress Condition from Electrodermal Activity. International Journal of Neural Systems, 2020, 30, 2050031.	3.2	29
9	Multi-Lag Analysis of Symbolic Entropies on EEG Recordings for Distress Recognition. Frontiers in Neuroinformatics, 2019, 13, 40.	1.3	21
10	Differences between young and older adults in physiological and subjective responses to emotion induction using films. Scientific Reports, 2020, 10, 14548.	1.6	21
11	A Deep Learning Approach for Featureless Robust Quality Assessment of Intermittent Atrial Fibrillation Recordings from Portable and Wearable Devices. Entropy, 2020, 22, 733.	1.1	20
12	Arousal Level Classification in the Ageing Adult by Measuring Electrodermal Skin Conductivity. Lecture Notes in Computer Science, 2015, , 213-223.	1.0	16
13	Smart environment architecture for robust people detection by infrared and visible video fusion. Journal of Ambient Intelligence and Humanized Computing, 2017, 8, 223-237.	3.3	16
14	Recognition of Emotional States from EEG Signals with Nonlinear Regularity- and Predictability-Based Entropy Metrics. Cognitive Computation, 2021, 13, 403-417.	3.6	16
15	Neural Correlates of Phrase Quadrature Perception in Harmonic Rhythm: An EEG Study Using a Brain–Computer Interface. International Journal of Neural Systems, 2018, 28, 1750054.	3.2	15
16	Nonlinear predictability analysis of brain dynamics for automatic recognition of negative stress. Neural Computing and Applications, 2020, 32, 13221-13231.	3.2	15
17	Arousal level classification of the aging adult from electro-dermal activity: From hardware development to software architecture. Pervasive and Mobile Computing, 2017, 34, 46-59.	2.1	14
18	Film mood induction and emotion classification using physiological signals for health and wellness promotion in older adults living alone. Expert Systems, 2020, 37, e12425.	2.9	14

#	Article	IF	CITATIONS
19	Neural Correlates of Phrase Rhythm: An EEG Study of Bipartite vs. Rondo Sonata Form. Frontiers in Neuroinformatics, 2017, 11, 29.	1.3	13
20	Assessment of dispersion patterns for negative stress detection from electroencephalographic signals. Pattern Recognition, 2021, 119, 108094.	5.1	10
21	Nonlinear Methodologies Applied to Automatic Recognition of Emotions: An EEG Review. Lecture Notes in Computer Science, 2017, , 754-765.	1.0	9
22	Emotion Detection in Ageing Adults from Physiological Sensors. Advances in Intelligent Systems and Computing, 2015, , 253-261.	0.5	8
23	Detection of Negative Stress through Spectral Features of Electroencephalographic Recordings and a Convolutional Neural Network. Sensors, 2021, 21, 3050.	2.1	8
24	A Mathematical Study of Accessibility and Cohesion Degree in a High-Speed Rail Station Connected to an Urban Bus Transport Network. Open Physics, 2017, 15, 160-174.	0.8	7
25	Blending Inverted Lectures and Laboratory Experiments to Improve Learning in an Introductory Course in Digital Systems. IEEE Transactions on Education, 2020, 63, 144-154.	2.0	7
26	Conditional Entropy Estimates for Distress Detection with EEG Signals. Lecture Notes in Computer Science, 2017, , 193-202.	1.0	7
27	Study of Electroencephalographic Signal Regularity for Automatic Emotion Recognition. Lecture Notes in Computer Science, 2017, , 766-777.	1.0	7
28	Application of Dispersion Entropy for the Detection of Emotions With Electroencephalographic Signals. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14, 1179-1187.	2.6	6
29	Cross-sample entropy for the study of coordinated brain activity in calm and distress conditions with electroencephalographic recordings. Neural Computing and Applications, 2021, 33, 9343-9352.	3.2	6
30	Early Prediction of Students at Risk of Failing a Face-to-Face Course in Power Electronic Systems. IEEE Transactions on Learning Technologies, 2021, 14, 590-603.	2.2	5
31	An Experimental Review on Obstructive Sleep Apnea Detection Based on Heart Rate Variability and Machine Learning Techniques. , 2020, , .		4
32	Stress Identification from Electrodermal Activity by Support Vector Machines. Lecture Notes in Computer Science, 2019, , 202-211.	1.0	3
33	Emotion Detection in Aging Adults Through Continuous Monitoring of Electro-Dermal Activity and Heart-Rate Variability. Lecture Notes in Computer Science, 2019, , 252-261.	1.0	3
34	Hierarchical Architecture for Robust People Detection by Fusion of Infrared and Visible Video. Studies in Computational Intelligence, 2016, , 343-351.	0.7	3
35	Nonlinear Symbolic Assessment of Electroencephalographic Recordings for Negative Stress Recognition. Lecture Notes in Computer Science, 2017, , 203-212.	1.0	3
36	Recent Advances and Challenges in Nonlinear Characterization of Brain Dynamics for Automatic Recognition of Emotional States. Lecture Notes in Computer Science, 2017, , 213-222.	1.0	3

#	Article	IF	CITATIONS
37	Comparison of Pre-Trained Deep Learning Algorithms for Quality Assessment of Electrocardiographic Recordings. , 2020, , .		3
38	ECG Quality Assessment via Deep Learning and Data Augmentation. , 2021, , .		3
39	Non-lineal EEG Modelling by Using Quadratic Entropy for Arousal Level Classification. Smart Innovation, Systems and Technologies, 2016, , 3-13.	0.5	2
40	EEG Mapping for Arousal Level Quantification Using Dynamic Quadratic Entropy. Advances in Intelligent Systems and Computing, 2016, , 207-214.	0.5	2
41	Emotional Induction Through Films: AÂModel for the Regulation of Emotions. Smart Innovation, Systems and Technologies, 2016, , 15-23.	O.5	2
42	Analysis of Electroencephalographic Signals from a Brain-Computer Interface for Emotions Detection. Lecture Notes in Computer Science, 2021, , 219-229.	1.0	2
43	Obstructive Sleep Apnea Detection Methods Based on Heart Rate Variability Analysis: Opportunities for a Future Cinc Challenge. , 0, , .		2
44	Editorial: Physiological Computing of Social Cognition. Frontiers in Human Neuroscience, 2019, 13, 326.	1.0	1
45	Comparative Study of Convolutional Neural Networks for ECG Quality Assessment. , 0, , .		1
46	Application of Deep Learning for Quality Assessment of Atrial Fibrillation ECG Recordings. , 0, , .		1
47	A Deep Learning Solution for Automatized Interpretation of 12-Lead ECGs. , 0, , .		1
48	Estudio comparativo de la centralidad y uso de Twitter de las televisiones autonómicas en los debates electorales del 26 M. Revista Latina De Comunicacion Social, 2020, , 97-119.	0.4	1
49	Detection of Emotions from Electroencephalographic Recordings by Means of a Nonlinear Functional Connectivity Measure. Lecture Notes in Computer Science, 2021, , 242-252.	1.0	0
50	Entropy and the Emotional Brain: Overview of a Research Field. Artificial Intelligence, 0, , .	2.0	0
51	Multilag Extension of Quadratic Sample Entropy for Distress Recognition with EEG Recordings. Advances in Intelligent Systems and Computing, 2019, , 274-281.	0.5	0
52	Deep Learning Detection of Corrupted Segments in Recordings from Wearable Devices to Improve Atrial Fibrillation Screening. , 2020, , .		0