
William J Kowalski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8302877/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sympathetic Neurons Regulate Cardiomyocyte Maturation in Culture. Frontiers in Cell and Developmental Biology, 2022, 10, 850645.	3.7	12
2	Ultrahigh-Frequency Echocardiography of Autonomic Devoid Phox2B Homozygous Embryos Does Not Reveal a Significant Cardiac Phenotype before Embryo Death. Ultrasound in Medicine and Biology, 2021, 47, 751-758.	1.5	1
3	Chronic Optogenetic Pacing of Human-Induced Pluripotent Stem Cell-Derived Engineered Cardiac Tissues. Methods in Molecular Biology, 2021, 2191, 151-169.	0.9	3
4	Heart neurons use clock genes to control myocyte proliferation. Science Advances, 2021, 7, eabh4181.	10.3	10
5	Validating the Paradigm That Biomechanical Forces Regulate Embryonic Cardiovascular Morphogenesis and Are Fundamental in the Etiology of Congenital Heart Disease. Journal of Cardiovascular Development and Disease, 2020, 7, 23.	1.6	7
6	Preparation of Mesh-Shaped Engineered Cardiac Tissues Derived from Human iPS Cells for In Vivo Myocardial Repair. Journal of Visualized Experiments, 2020, , .	0.3	1
7	Progress in the Generation of Multiple Lineage Human-iPSC-Derived 3D-Engineered Cardiac Tissues for Cardiac Repair. , 2020, , 353-361.		0
8	Chronic optical pacing conditioning of h-iPSC engineered cardiac tissues. Journal of Tissue Engineering, 2019, 10, 204173141984174.	5.5	17
9	Asymmetry in Mechanosensitive Gene Expression during Aortic Arch Morphogenesis. Scientific Reports, 2018, 8, 16948.	3.3	9
10	Quantification of Cardiomyocyte Alignment from Three-Dimensional (3D) Confocal Microscopy of Engineered Tissue. Microscopy and Microanalysis, 2017, 23, 826-842.	0.4	10
11	Impact of Cell Composition and Geometry on Human Induced Pluripotent Stem Cells-Derived Engineered Cardiac Tissue. Scientific Reports, 2017, 7, 45641.	3.3	61
12	Time-Series Interactions of Gene Expression, Vascular Growth and Hemodynamics during Early Embryonic Arterial Development. PLoS ONE, 2016, 11, e0161611.	2.5	9
13	The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages. Scientific Reports, 2016, 6, 29933.	3.3	95
14	Transition from fetal to neonatal circulation: Modeling the effect of umbilical cord clamping. Journal of Biomechanics, 2015, 48, 1662-1670.	2.1	32
15	Growth and hemodynamics after early embryonic aortic arch occlusion. Biomechanics and Modeling in Mechanobiology, 2015, 14, 735-751.	2.8	34
16	Hemodynamic Flow Visualization of Early Embryonic Great Vessels Using μPIV. Methods in Molecular Biology, 2015, 1189, 17-30.	0.9	2
17	Investigating developmental cardiovascular biomechanics and the origins of congenital heart defects. Frontiers in Physiology, 2014, 5, 408.	2.8	37
18	Simultaneous real-time quantification of blood flow and vascular growth in the chick embryo using		3

optical coherence tomography., 2014,,.

WILLIAM J KOWALSKI

#	Article	IF	CITATIONS
19	Left atrial ligation alters intracardiac flow patterns and the biomechanical landscape in the chick embryo. Developmental Dynamics, 2014, 243, 652-662.	1.8	31
20	Time-resolved OCT-Î1⁄4PIV: a new microscopic PIV technique for noninvasive depth-resolved pulsatile flow profile acquisition. Experiments in Fluids, 2013, 54, 1.	2.4	13
21	Novel Fenestration Designs for Controlled Venous Flow Shunting in Failing <scp>F</scp> ontans With Systemic Venous Hypertension. Artificial Organs, 2013, 37, 66-75.	1.9	6
22	Computational Fluid Dynamics Analysis of Early Embryonic Aortic Arch-Ligation. , 2013, , .		0
23	Transition From the Fetal to Neonatal Circulation: Modeling the Effect of Umbilical Cord Clamping. , 2013, , .		0
24	Critical Transitions in Early Embryonic Aortic Arch Patterning and Hemodynamics. PLoS ONE, 2013, 8, e60271.	2.5	43
25	Computational hemodynamic optimization predicts dominant aortic arch selection is driven by embryonic outflow tract orientation in the chick embryo. Biomechanics and Modeling in Mechanobiology, 2012, 11, 1057-1073.	2.8	20
26	Analysis of early embryonic great-vessel microcirculation in zebrafish using high-speed confocal μPIV. Biorheology, 2011, 48, 305-321.	0.4	28