Francois Brion

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8302007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-Term Exposure to Environmental Concentrations of the Pharmaceutical Ethynylestradiol Causes Reproductive Failure in Fish. Environmental Health Perspectives, 2004, 112, 1725-1733.	2.8	545
2	Impacts of 17β-estradiol, including environmentally relevant concentrations, on reproduction after exposure during embryo-larval-, juvenile- and adult-life stages in zebrafish (Danio rerio). Aquatic Toxicology, 2004, 68, 193-217.	1.9	337
3	Aromatase in the brain of teleost fish: Expression, regulation and putative functions. Frontiers in Neuroendocrinology, 2010, 31, 172-192.	2.5	270
4	Identification of aromatase-positive radial glial cells as progenitor cells in the ventricular layer of the forebrain in zebrafish. Journal of Comparative Neurology, 2007, 501, 150-167.	0.9	257
5	Future water quality monitoring $\hat{a} \in$ Adapting tools to deal with mixtures of pollutants in water resource management. Science of the Total Environment, 2015, 512-513, 540-551.	3.9	243
6	Expression and estrogen-dependent regulation of the zebrafish brain aromatase gene. Journal of Comparative Neurology, 2005, 485, 304-320.	0.9	228
7	Development of a bioanalytical test battery for water quality monitoring: Fingerprinting identified micropollutants and their contribution to effects in surface water. Water Research, 2017, 123, 734-750.	5.3	179
8	Effect-based trigger values for in vitro and in vivo bioassays performed on surface water extracts supporting the environmental quality standards (EQS) of the European Water Framework Directive. Science of the Total Environment, 2018, 628-629, 748-765.	3.9	176
9	Screening Estrogenic Activities of Chemicals or Mixtures In Vivo Using Transgenic (cyp19a1b-GFP) Zebrafish Embryos. PLoS ONE, 2012, 7, e36069.	1.1	164
10	In vitro and in vivo estrogenic activity of BPA, BPF and BPS in zebrafish-specific assays. Ecotoxicology and Environmental Safety, 2017, 142, 150-156.	2.9	162
11	European demonstration program on the effect-based and chemical identification and monitoring of organic pollutants in European surface waters. Science of the Total Environment, 2017, 601-602, 1849-1868.	3.9	151
12	Adverse effects in wild fish living downstream from pharmaceutical manufacture discharges. Environment International, 2011, 37, 1342-1348.	4.8	148
13	Integrating chemical analysis and bioanalysis to evaluate the contribution of wastewater effluent on the micropollutant burden in small streams. Science of the Total Environment, 2017, 576, 785-795.	3.9	131
14	A <i>cyp19a1bâ€gfp</i> (aromatase B) transgenic zebrafish line that expresses GFP in radial glial cells. Genesis, 2009, 47, 67-73.	0.8	118
15	Mixture effects in samples of multiple contaminants – An inter-laboratory study with manifold bioassays. Environment International, 2018, 114, 95-106.	4.8	113
16	Identification of Synthetic Steroids in River Water Downstream from Pharmaceutical Manufacture Discharges Based on a Bioanalytical Approach and Passive Sampling. Environmental Science & Technology, 2014, 48, 3649-3657.	4.6	111
17	Mixtures of Chemical Pollutants at European Legislation Safety Concentrations: How Safe Are They?. Toxicological Sciences, 2014, 141, 218-233.	1.4	108
18	Development of quantitative vitellogenin-ELISAs for fish test species used in endocrine disruptor screening. Analytical and Bioanalytical Chemistry, 2004, 378, 621-633.	1.9	104

FRANCOIS BRION

#	Article	IF	CITATIONS
19	Modulation of aromatase activity and mRNA by various selected pesticides in the human choriocarcinoma JEG-3 cell line. Toxicology, 2006, 228, 98-108.	2.0	97
20	Brain and gonadal aromatase as potential targets of endocrine disrupting chemicals in a model species, the zebrafish (Danio rerio). Environmental Toxicology, 2006, 21, 332-337.	2.1	86
21	Title is missing!. Ecotoxicology, 2000, 9, 127-135.	1.1	81
22	Expression of Zebra Fish Aromatase cyp19a and cyp19b Genes in Response to the Ligands of Estrogen Receptor and Aryl Hydrocarbon Receptor. Toxicological Sciences, 2006, 96, 255-267.	1.4	79
23	Inhibition of rainbow trout (Oncorhynchus mykiss) P450 aromatase activities in brain and ovarian microsomes by various environmental substances. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2006, 144, 252-262.	1.3	77
24	17α-Ethinylestradiol disrupts the ontogeny of the forebrain GnRH system and the expression of brain aromatase during early development of zebrafish. Aquatic Toxicology, 2010, 99, 479-491.	1.9	77
25	Cell-Specific Biotransformation of Benzophenone-2 and Bisphenol-S in Zebrafish and Human in Vitro Models Used for Toxicity and Estrogenicity Screening. Environmental Science & Technology, 2015, 49, 3860-3868.	4.6	65
26	Assessment of a novel device for onsite integrative large-volume solid phase extraction of water samples to enable a comprehensive chemical and effect-based analysis. Science of the Total Environment, 2017, 581-582, 350-358.	3.9	63
27	Metformin in Reproductive Biology. Frontiers in Endocrinology, 2018, 9, 675.	1.5	62
28	A Physiologically Based Toxicokinetic Model for the Zebrafish <i>Danio rerio</i> . Environmental Science & Technology, 2014, 48, 781-790.	4.6	61
29	Estrogenic Potency of Benzophenone UV Filters in Breast Cancer Cells: Proliferative and Transcriptional Activity Substantiated by Docking Analysis. PLoS ONE, 2013, 8, e60567.	1.1	60
30	Selective Activation of Zebrafish Estrogen Receptor Subtypes by Chemicals by Using Stable Reporter Gene Assay Developed in a Zebrafish Liver Cell Line. Toxicological Sciences, 2012, 125, 439-449.	1.4	57
31	Development and validation of an enzymeâ€linked immunosorbent assay to measure vitellogenin in the zebrafish (<i>Danio rerio</i>). Environmental Toxicology and Chemistry, 2002, 21, 1699-1708.	2.2	56
32	Anti-androgenic activities of environmental pesticides in the MDA-kb2 reporter cell line. Toxicology in Vitro, 2010, 24, 1979-1985.	1.1	47
33	Neuroendocrine Effects of Endocrine Disruptors in Teleost Fish. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2011, 14, 370-386.	2.9	46
34	17α-Ethinylestradiol and nonylphenol affect the development of forebrain GnRH neurons through an estrogen receptors-dependent pathway. Reproductive Toxicology, 2012, 33, 198-204.	1.3	46
35	Oestrogen-induced androgen insufficiency results in a reduction of proliferation and differentiation of spermatogonia in the zebrafish testis. Journal of Endocrinology, 2009, 202, 287-297.	1.2	45
36	Two-step purification method of vitellogenin from three teleost fish species: rainbow trout (Oncorhynchus mykiss), gudgeon (Gobio gobio) and chub (Leuciscus cephalus). Biomedical Applications, 2000, 737, 3-12.	1.7	44

FRANCOIS BRION

#	Article	IF	CITATIONS
37	Cyp17a1 and Cyp19a1 in the zebrafish testis are differentially affected by oestradiol. Journal of Endocrinology, 2013, 216, 375-388.	1.2	43
38	Monitoring estrogenic activities of waste and surface waters using a novel in vivo zebrafish embryonic (EASZY) assay: Comparison with in vitro cell-based assays and determination of effect-based trigger values. Environment International, 2019, 130, 104896.	4.8	43
39	Inhibitory effect of cadmium on estrogen signaling in zebrafish brain and protection by zinc. Journal of Applied Toxicology, 2016, 36, 863-871.	1.4	42
40	Endocrine disruption in wild populations of chub (Leuciscus cephalus) in contaminated French streams. Science of the Total Environment, 2010, 408, 2146-2154.	3.9	39
41	Transgenic (cyp19a1b-GFP) zebrafish embryos as a tool for assessing combined effects of oestrogenic chemicals. Aquatic Toxicology, 2013, 138-139, 88-97.	1.9	39
42	An Individual-Based Model of Zebrafish Population Dynamics Accounting for Energy Dynamics. PLoS ONE, 2015, 10, e0125841.	1.1	39
43	Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors. Toxicology and Applied Pharmacology, 2014, 280, 60-69.	1.3	38
44	Differential activity of BPA, BPAF and BPC on zebrafish estrogen receptors in vitro and in vivo. Toxicology and Applied Pharmacology, 2019, 380, 114709.	1.3	37
45	Characterization of testicular expression of P450 17α-hydroxylase, 17,20-lyase in zebrafish and its perturbation by the pharmaceutical fungicide clotrimazole. General and Comparative Endocrinology, 2011, 174, 309-317.	0.8	36
46	A critical role of follicle-stimulating hormone (Fsh) in mediating the effect of clotrimazole on testicular steroidogenesis in adult zebrafish. Toxicology, 2012, 298, 30-39.	2.0	36
47	Effects of depleted uranium on the reproductive success and F1 generation survival of zebrafish (Danio rerio). Aquatic Toxicology, 2014, 154, 1-11.	1.9	35
48	A stable fish reporter cell line to study estrogen receptor transactivation by environmental (xeno)estrogens. Toxicology in Vitro, 2009, 23, 1450-1454.	1.1	34
49	Effect-directed analysis for estrogenic compounds in a fluvial sediment sample using transgenic cyp19a1b-GFP zebrafish embryos. Aquatic Toxicology, 2014, 154, 221-229.	1.9	34
50	Exposures of zebrafish through diet to three environmentally relevant mixtures of PAHs produce behavioral disruptions in unexposed F1 and F2 descendant. Environmental Science and Pollution Research, 2015, 22, 16371-16383.	2.7	34
51	An integrative approach combining passive sampling, bioassays, and effectâ€directed analysis to assess the impact of wastewater effluent. Environmental Toxicology and Chemistry, 2018, 37, 2079-2088.	2.2	33
52	Comparison of the In Vivo Biotransformation of Two Emerging Estrogenic Contaminants, BP2 and BPS, in Zebrafish Embryos and Adults. International Journal of Molecular Sciences, 2017, 18, 704.	1.8	32
53	Localization of steroidogenic enzymes and Foxl2a in the gonads of mature zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 188, 96-106.	0.8	29
54	Zebrafish-based reporter gene assays reveal different estrogenic activities in river waters compared to a conventional human-derived assay. Science of the Total Environment, 2016, 550, 934-939.	3.9	27

FRANCOIS BRION

#	Article	IF	CITATIONS
55	Effect of in vivo chronic exposure to clotrimazole on zebrafish testis function. Environmental Science and Pollution Research, 2013, 20, 2747-2760.	2.7	26
56	BFCOD activity in fish cell lines and zebrafish embryos and its modulation by chemical ligands of human aryl hydrocarbon and nuclear receptors. Environmental Science and Pollution Research, 2015, 22, 16393-16404.	2.7	25
57	Several synthetic progestins disrupt the glial cell specific-brain aromatase expression in developing zebra fish. Toxicology and Applied Pharmacology, 2016, 305, 12-21.	1.3	25
58	Human and Zebrafish Nuclear Progesterone Receptors Are Differently Activated by Manifold Progestins. Environmental Science & Technology, 2020, 54, 9510-9518.	4.6	17
59	Additive effects of levonorgestrel and ethinylestradiol on brain aromatase (cyp19a1b) in zebrafish specific in vitro and in vivo bioassays. Toxicology and Applied Pharmacology, 2016, 307, 108-114.	1.3	16
60	Dynamic and differential expression of the gonadal aromatase during the process of sexual differentiation in a novel transgenic cyp19a1a-eGFP zebrafish line. General and Comparative Endocrinology, 2018, 261, 179-189.	0.8	16
61	Triclosan Lacks (Anti-)Estrogenic Effects in Zebrafish Cells but Modulates Estrogen Response in Zebrafish Embryos. International Journal of Molecular Sciences, 2018, 19, 1175.	1.8	16
62	Combined effects of environmental xeno-estrogens within multi-component mixtures: Comparison of inÂvitro human- and zebrafish-based estrogenicity bioassays. Chemosphere, 2019, 227, 334-344.	4.2	16
63	A new ELISA for the three-spined stickleback (Gasterosteus aculeatus L.) spiggin, using antibodies against synthetic peptide. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2008, 147, 129-137.	1.3	14
64	Endocrine effects of the tapeworm <i>Ligula intestinalis</i> in its teleost host, the roach (<i>Rutilus) Tj ETQq0 0</i>	0 rgBT /O	verlock 10 Tf 5 14
65	Brain cytochrome P450 aromatase activity in roach (Rutilus rutilus): Seasonal variations and impact of environmental contaminants. Aquatic Toxicology, 2011, 105, 378-384.	1.9	14
66	Refinement of an OECD test guideline for evaluating the effects of endocrine disrupting chemicals on aromatase gene expression and reproduction using novel transgenic cyp19a1a-eGFP zebrafish. Aquatic Toxicology, 2020, 220, 105403.	1.9	13
67	Mixture Concentration-Response Modeling Reveals Antagonistic Effects of Estradiol and Genistein in Combination on Brain Aromatase Gene (cyp19a1b) in Zebrafish. International Journal of Molecular Sciences, 2018, 19, 1047.	1.8	12
68	Hypericum lanceolatum Lam. Medicinal Plant: Potential Toxicity and Therapeutic Effects Based on a Zebrafish Model. Frontiers in Pharmacology, 2022, 13, 832928.	1.6	10
69	Neurodevelopmental effects of natural and synthetic ligands of estrogen and progesterone receptors in zebrafish eleutheroembryos. General and Comparative Endocrinology, 2020, 288, 113345.	0.8	9
70	Estrogenic activity of surface waters using zebrafish- and human-based in vitro assays: The Danube as a case-study. Environmental Toxicology and Pharmacology, 2020, 78, 103401.	2.0	8
71	Development and validation of an enzyme-linked immunosorbent assay to measure vitellogenin in the zebrafish (Danio rerio). Environmental Toxicology and Chemistry, 2002, 21, 1699-708.	2.2	7
72	DEVELOPMENT AND VALIDATION OF AN ENZYME-LINKED IMMUNOSORBENT ASSAY TO MEASURE	2.2	5

72 2.2 VITELLOGENIN IN THE ZEBRAFISH (DANIO RERIO). Environmental Toxicology and Chemistry, 2002, 21, 1699.

#	Article	IF	CITATIONS
73	A comparison of behavioral and reproductive parameters between wild-type, transgenic and mutant zebrafish: Could they all be considered the same "zebrafishâ€for reglementary assays on endocrine disruption?. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2021, 239, 108879.	1.3	3