
## Vaithinathan Karthikeyan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/830196/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Wearable and flexible thin film thermoelectric module for multi-scale energy harvesting. Journal of Power Sources, 2020, 455, 227983.                                                                                                | 7.8 | 85        |
| 2  | Glass-to-glass encapsulation with ultraviolet light curable epoxy edge sealing for stable perovskite solar cells. Materials Letters, 2019, 250, 51-54.                                                                               | 2.6 | 51        |
| 3  | Experimental studies on photovoltaic module temperature reduction using eutectic cold phase change material. Solar Energy, 2020, 209, 302-315.                                                                                       | 6.1 | 39        |
| 4  | Polyethylene Glycol Coated Magnetic Nanoparticles: Hybrid Nanofluid Formulation, Properties and<br>Drug Delivery Prospects. Nanomaterials, 2021, 11, 440.                                                                            | 4.1 | 34        |
| 5  | Hydrothermally tailored anatase TiO 2 nanoplates with exposed {1 1 1} facets for highly efficient dye-sensitized solar cells. Solar Energy, 2017, 147, 202-208.                                                                      | 6.1 | 26        |
| 6  | Dislocation-induced ultra-low lattice thermal conductivity in rare earth doped β-Zn4Sb3. Scripta<br>Materialia, 2020, 174, 95-101.                                                                                                   | 5.2 | 14        |
| 7  | Defect and Dopant Mediated Thermoelectric Power Factor Tuning in βâ€Zn <sub>4</sub> Sb <sub>3</sub> .<br>Advanced Electronic Materials, 2020, 6, 1901284.                                                                            | 5.1 | 14        |
| 8  | Defect Engineering Boosted Ultrahigh Thermoelectric Power Conversion Efficiency in Polycrystalline<br>SnSe. ACS Applied Materials & Interfaces, 2021, 13, 58701-58711.                                                               | 8.0 | 14        |
| 9  | Tuning the photoluminescence, conduction mechanism and scattering mechanism of ZnSnN2. Journal of Alloys and Compounds, 2019, 779, 237-243.                                                                                          | 5.5 | 13        |
| 10 | A Comparative Evaluation of Physicochemical Properties and Photocatalytic Efficiencies of Cerium<br>Oxide and Copper Oxide Nanofluids. Catalysts, 2020, 10, 34.                                                                      | 3.5 | 13        |
| 11 | Hierarchically Interlaced 2D Copper Iodide/MXene Composite for High Thermoelectric Performance.<br>Physica Status Solidi - Rapid Research Letters, 2022, 16, 2100419.                                                                | 2.4 | 13        |
| 12 | Experimental Studies on PV Module Cooling With Radiation Source PCM Matrix. IEEE Access, 2020, 8, 145936-145949.                                                                                                                     | 4.2 | 12        |
| 13 | A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of<br>Large-Scale Solar PV System. Sustainability, 2022, 14, 1963.                                                                        | 3.2 | 11        |
| 14 | Influence of nitrogen dopant source on the structural, photoluminescence and electrical properties of ZnO thin films deposited by pulsed spray pyrolysis. Ceramics International, 2019, 45, 24324-24330.                             | 4.8 | 10        |
| 15 | Improving the chemical potential of nitrogen to tune the electron density and mobility of ZnSnN <sub>2</sub> . Journal of Materials Chemistry C, 2020, 8, 4314-4320.                                                                 | 5.5 | 10        |
| 16 | Efficient heat batteries for performance boosting in solar thermal cooking module. Journal of<br>Cleaner Production, 2021, 324, 129223.                                                                                              | 9.3 | 10        |
| 17 | Investigations on the correlation between surface texturing histogram and the spectral reflectance of (100) Crystalline Silicon Substrate textured using anisotropic etching. Sensors and Actuators A: Physical, 2017, 263, 445-450. | 4.1 | 7         |
| 18 | Highly Sensitive and Cost-Effective Portable Sensor for Early Gastric Carcinoma Diagnosis. Sensors, 2021, 21, 2639.                                                                                                                  | 3.8 | 7         |

1

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Ambient processed perovskite sensitized porous TiO2 nanorods for highly efficient and stable perovskite solar cells. Journal of Alloys and Compounds, 2021, 884, 161061.                                                                       | 5.5 | 7         |
| 20 | Amorphous carbon nano-inclusions for strategical enhancement of thermoelectric performance in Earth-abundant Cu3SbS4. Journal of Alloys and Compounds, 2022, 900, 163433.                                                                      | 5.5 | 7         |
| 21 | Contactless phase change material based photovoltaic module cooling: A statistical approach by clustering and correlation algorithm. Journal of Energy Storage, 2022, 53, 105139.                                                              | 8.1 | 7         |
| 22 | Fabricating ZnSnN2 with cosputtering. Surface and Coatings Technology, 2019, 359, 169-174.                                                                                                                                                     | 4.8 | 6         |
| 23 | Hierarchical Sn and AgCl co-doped TiO2 microspheres as electron transport layer for enhanced perovskite solar cell performance. Catalysis Today, 2020, 355, 333-339.                                                                           | 4.4 | 6         |
| 24 | 3D Microstructured Frequency Selective Surface Based on Carbonized Polyimide Films for Terahertz<br>Applications. Advanced Optical Materials, 2022, 10, .                                                                                      | 7.3 | 5         |
| 25 | Gating a Single Cell: A Label-Free and Real-Time Measurement Method for Cellular Progression.<br>Analytical Chemistry, 2020, 92, 1738-1745.                                                                                                    | 6.5 | 4         |
| 26 | New monomeric mixed-ligand complex of iron(III)-3-chloropyridine: Synthesis, structure,<br>luminescence, electrochemical and magnetic properties. Journal of Molecular Structure, 2021, 1225,<br>129160.                                       | 3.6 | 4         |
| 27 | Facile Use of Silver Nanoparticles-Loaded Alumina/Silica in Nanofluid Formulations for Enhanced<br>Catalytic Performance toward 4-Nitrophenol Reduction. International Journal of Environmental<br>Research and Public Health, 2021, 18, 2994. | 2.6 | 4         |
|    |                                                                                                                                                                                                                                                |     |           |

Thermoelectric properties of sulfide and selenide-based materials. , 2022, , 293-328.