
Xiang-feng Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8301662/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation, properties, and photocatalytic mechanism of In2.77S4/BiVO4 heterostructure for tetracycline degradation. Journal of Materials Science: Materials in Electronics, 2022, 33, 14680-14690.	1.1	4
2	Preparation and characterization of Sn-doped In2.77S4 nanosheets as a visible-light-induced photocatalyst for tetracycline degradation. Journal of Materials Science: Materials in Electronics, 2021, 32, 2822-2831.	1.1	8
3	The synergistic role of the photosensitivity effect and extended space charge region in an inorganic–organic WO ₃ /PANI photoanode for efficient PEC water splitting. Sustainable Energy and Fuels, 2021, 5, 2893-2906.	2.5	12
4	Preparation of Bi3.64Mo0.36O6.55 by reflux method and its application in photodegradation of organic pollution. Journal of Materials Science: Materials in Electronics, 2021, 32, 17890-17900.	1.1	3
5	Thermal Excitation Polarized Field Drives Photoelectric Catalysis for Dye Degradation in a BaTiO ₃ /CdS Heterojunction through Integration of Solar and Thermal Energy. ChemPhotoChem, 2021, 5, 1106-1118.	1.5	10
6	Interface engineering of heterojunction photocatalysts based on 1D nanomaterials. Catalysis Science and Technology, 2021, 11, 27-42.	2.1	86
7	Enhanced piezoelectric-effect-assisted photoelectrochemical performance in ZnO modified with dual cocatalysts. Applied Catalysis B: Environmental, 2020, 262, 118279.	10.8	147
8	Preparation, characterization and photocatalytic degradation properties of Zn0.5Cd0.5S/SnO2 composites. Journal of Materials Science: Materials in Electronics, 2020, 31, 1585-1593.	1.1	2
9	AgBrO ₃ /Few-Layer g-C ₃ N ₄ Composites: A Visible-Light-Driven Photocatalyst for Tetracycline Degradation. Journal of Nanoscience and Nanotechnology, 2020, 20, 3424-3431.	0.9	5
10	Visible-Light-Sensitive SrCO3/AgI Hybrids for Tetracycline Degradation. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 885-892.	0.4	5
11	Study on Ag2WO4/g-C3N4 Nanotubes as an Efficient Photocatalyst for Degradation of Rhodamine B. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4847-4857.	1.9	17
12	In-situ Synthesis of SnO2 Quantum Dots/ZnS Nanosheets Heterojunction as a Visible-light-driven Photocatalyst for Degradation of Rhodamine B, Potassium Dichromate and Tetracycline. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 719-725.	0.4	4
13	Preparation and Properties of CdS/Spherical g-C3N4 n-n Heterojunction as a Visible-Light-Driven Photocatalyst for Tetracycline Degradation. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 99-106.	0.4	7
14	Oxygen vacancies and p-n heterojunction modified BiOBr for enhancing donor density and separation efficiency under visible-light irradiation. Journal of Alloys and Compounds, 2020, 834, 155025.	2.8	25
15	A yolk–shell Bi@void@SnO2 photocatalyst with enhanced tetracycline degradation. Journal of Materials Science: Materials in Electronics, 2019, 30, 14987-14994.	1.1	20
16	Hydrothermal Synthesis of Zn2SnO4/Few-Layer Boron Nitride Nanosheets Hybrids as a Visible-Light-Driven Photocatalyst. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 563-567.	0.4	5
17	Hydrothermal synthesis of Zn2+ doped In2.77S4 nanosheets as a visible-light photocatalyst for tetracycline degradation. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	4
18	Synthesis of AgI/2D-La2Ti2O7 hybrids as a visible light photocatalyst for degradation of rhodamine B. Journal of Materials Science: Materials in Electronics, 2019, 30, 9379-9387.	1.1	7

XIANG-FENG WU

#	Article	IF	CITATIONS
19	Synthesis of Agl/WS 2 hybrids as a novel photocatalyst with efficient degradation of rhodamine B. Micro and Nano Letters, 2019, 14, 173-177.	0.6	7
20	Chemical-bonds Conjugated SnO2/AgIO4 Hybrids for Degradation of High Concentration Rhodamin B under Visible Light Illumination. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 1408-1414.	0.4	2
21	Full spectrum responsive In2.77S4/WS2 p-n heterojunction as an efficient photocatalyst for Cr(VI) reduction and tetracycline oxidation. Applied Surface Science, 2019, 473, 992-1001.	3.1	46
22	In-situ synthesis of novel p-n heterojunction of Ag2CrO4-Bi2Sn2O7 hybrids for visible-light-driven photocatalysis. Journal of Alloys and Compounds, 2018, 740, 1197-1203.	2.8	77
23	Isothermal Crystallization Properties of Polyamide 6 / Hexagonal Boron Nitride Nanocomposites. Journal of Macromolecular Science - Physics, 2018, 57, 56-65.	0.4	2
24	Synthesis of Ag2CrO4/SnO2 n–n type heterojunction as a visible light photocatalyst for degradation of rhodamine B. Journal of Materials Science: Materials in Electronics, 2018, 29, 20959-20967.	1.1	5
25	Synthesis of visible and nearâ€infrared light responsed Sn 1â^' x Bi x S 2 for efficient degradation of high concentration rhodamine B. Micro and Nano Letters, 2018, 13, 427-431.	0.6	3
26	One-step hydrothermal synthesis of visible-light-driven In2.77S4/SrCO3 heterojunction with efficient photocatalytic activity for degradation of methyl orange and tetracycline. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	10
27	Designing visible-light-driven direct Z-scheme Ag2WO4/WS2 heterojunction to enhance photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2018, 29, 14874-14882.	1.1	9
28	Zn ₂ SnO ₄ -Reduced Graphene Oxide Nanohybrids for Visible-Light-Driven Photocatalysis. Journal of Nanoscience and Nanotechnology, 2018, 18, 999-1005.	0.9	12
29	Chemical-Bonds-Conjugated Ag ₂ SO ₃ /NaNbO ₃ Hybrids as Efficient Photocatalysts: <i>In-Situ</i> Fabrication, Characterization and Degradation of Rhodamine B and Methyl Orange. Nano, 2018, 13, 1850076.	0.5	5
30	AgCl/AgIO ₄ composites as an efficient photocatalyst for visibleâ€lightâ€driven degradation of rhodamine B. Micro and Nano Letters, 2018, 13, 1358-1362.	0.6	2
31	Preparation and Characterization of Nanosized Bi-Doped SnO ₂ /Reduced Graphene Oxide 3D Hybrids for Visible-Light-Driven Photocatalysis. Journal of Nanoscience and Nanotechnology, 2018, 18, 4935-4939.	0.9	5
32	Novel AgCl/Ag ₂ SO ₃ Hybrids as a Visibleâ€Lightâ€driven Photocatalyst: Preparation, Characterization, and Degradation of Rhodamineâ€B and Methyl Orange. Bulletin of the Korean Chemical Society, 2018, 39, 847-852.	1.0	2
33	Fabrication and characterization of visible light-driven In2.77S4/In(OH)3 composite photocatalysts with excellent redox performance. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	10
34	Non-Isothermal Crystallization Kinetics of Polyamide 6/h-Boron Nitride Composites. Journal of Macromolecular Science - Physics, 2017, 56, 170-177.	0.4	7
35	One-step hydrothermal synthesis of In2.77S4 nanosheets with efficient photocatalytic activity under visible light. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	22
36	Solvothermal Preparation of Zinc Oxide/Reduced Graphene Oxide Composites for Rapid Removal of Methylene Blue. Journal of Nanoscience and Nanotechnology, 2017, 17, 517-523.	0.9	4

XIANG-FENG WU

#	Article	IF	CITATIONS
37	Solvent-Mediated Preparation of Zinc Ferrite-Reduced Graphene Oxide Nanocomposites and Its Application in Removal of Methylene Blue. Journal of Nanoscience and Nanotechnology, 2017, 17, 2520-2524.	0.9	2
38	Boron Nitride Nanoparticles with High Specific Surface Area: Preparation by a Calcination Method and Application in Epoxy Resin. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1142-1147.	1.9	8
39	Preparation and characterization of Ag2CrO4/few layer boron nitride hybrids for visible-light-driven photocatalysis. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	18
40	A novel MWCNT/nanotubular TiO2(B) loaded with SnO2 nanocrystals ternary composite as anode material for lithium-ion batteries. Journal of Materials Science, 2017, 52, 3016-3027.	1.7	15
41	Synthesis of SnS2/few layer boron nitride nanosheets composites as a novel material for visible-light-driven photocatalysis. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	31
42	Crystallization Behaviors of Graphene Oxide–Carbon Nanotubes Hybrids/Polyamide 66 Composites. Polymer-Plastics Technology and Engineering, 2017, 56, 556-562.	1.9	3
43	Few-layer boron nitride nanosheets: Preparation, characterization and application in epoxy resin. Ceramics International, 2017, 43, 2274-2278.	2.3	21
44	Preparation of Reduced-Graphene Nanoribbons via One-Step Solvothermal Process. Journal of Nanoscience and Nanotechnology, 2016, 16, 4191-4194.	0.9	1
45	Graphene Oxide–Carbon Nanotubes Hybrids: Preparation, Characterization, and Application in Phenol Formaldehyde Resin. Journal of Macromolecular Science - Physics, 2015, 54, 1507-1514.	0.4	9
46	Template-free preparation of a few-layer graphene nanomesh via a one-step hydrothermal process. Journal of Materials Science, 2015, 50, 1317-1322.	1.7	6
47	Synergetic reduction of graphene oxide by sodium hydroxide and microwave irritation. Micro and Nano Letters, 2014, 9, 804-806.	0.6	4
48	Spectroscopic Investigation on the Interaction of Ferrocene Containing Hyperbranched Poly(amine) Ester with Model Plasma Protein. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 360-370.	1.9	4
49	Probing the interaction of ferrocene containing hyperbranched poly-ester with model plasma protein: Effect on the interaction mechanism and conformational change. Journal of Luminescence, 2014, 149, 306-312.	1.5	5
50	Investigation of the Redox Property, Migration and Catalytic Performance of Ferrocene-Modified Hyperbranched Poly(amine) Ester. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 315-324.	1.9	31
51	Fabrication and Properties of Hollow Glass Beads Loaded Carbon Nanotubes/Epoxy Composites. Journal of Macromolecular Science - Physics, 2013, 52, 355-363.	0.4	5
52	Non-Isothermal Crystallization of Poly(vinylidene Fluoride)/Multiwalled Carbon Nanotube Composites. International Journal of Polymer Analysis and Characterization, 2013, 18, 83-92.	0.9	7
53	Morphology, Structure, and Crystallization of LaCl Modified Hollow Glass Microspheres/ Poly(vinylidenefluoride) Composites. Journal of Macromolecular Science - Physics, 2012, 51, 2438-2448.	0.4	4