Caio Gomide Otoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/830148/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication of Noncytotoxic Functional Siloxane-Coated Bacterial Cellulose Nanocrystals. ACS Applied Polymer Materials, 2022, 4, 2306-2313.	2.0	4
2	Triple-action packaging: Food protection and monitoring enabled by agri-food side streams. Food Hydrocolloids, 2022, 133, 107981.	5.6	5
3	Regioselective and water-assisted surface esterification of never-dried cellulose: nanofibers with adjustable surface energy. Green Chemistry, 2021, 23, 6966-6974.	4.6	24
4	Functionalized Polydiacetylene Vesicles for Lactate Sensing: An Interaction Study. ACS Food Science & Technology, 2021, 1, 745-753.	1.3	1
5	Ultrathin polymer fibers hybridized with bioactive ceramics: A review on fundamental pathways of electrospinning towards bone regeneration. Materials Science and Engineering C, 2021, 123, 111853.	3.8	28
6	Development of quaternary nanocomposites made up of cassava starch, cocoa butter, lemongrass essential oil nanoemulsion, and brewery spent grain fibers. Journal of Food Science, 2021, 86, 1979-1996.	1.5	10
7	Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chemical Reviews, 2021, 121, 14088-14188.	23.0	113
8	The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agriâ€Food Residues. Advanced Materials, 2021, 33, e2102520.	11.1	50
9	Climate-Based Analysis for the Potential Use of Coconut Oil as Phase Change Material in Buildings. Sustainability, 2021, 13, 10731.	1.6	9
10	Upcycling Byproducts from Insect (Fly Larvae and Mealworm) Farming into Chitin Nanofibers and Films. ACS Sustainable Chemistry and Engineering, 2021, 9, 13618-13629.	3.2	13
11	The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agriâ€Food Residues (Adv. Mater. 43/2021). Advanced Materials, 2021, 33, 2170342.	11.1	3
12	Correlating emulsion characteristics with the properties of active starch films loaded with lemongrass essential oil. Food Hydrocolloids, 2020, 100, 105428.	5.6	105
13	Antioxidant active packaging based on papaya edible films incorporated with Moringa oleifera and ascorbic acid for food preservation. Food Hydrocolloids, 2020, 103, 105630.	5.6	98
14	In a nutshell: prospects and challenges on coatings for edible kernels. Journal of the Science of Food and Agriculture, 2020, 100, 2321-2326.	1.7	6
15	Large scale manufacturing of puree-only edible films from onion bulb (Allium cepa L.): Probing production and structure–processing–property correlations. Industrial Crops and Products, 2020, 145, 111847.	2.5	8
16	Ultrasound-assisted extraction of starch nanoparticles from breadfruit (Artocarpus altilis) Tj ETQq0 0 0 rgBT /Ov 124277.	erlock 10 ⁻ 2.3	If 50 147 Td 24
17	Anatomy, Flow Cytometry, and X-Ray Tomography Reveal Tissue Organization and Ploidy Distribution in Long-Term In Vitro Cultures of Melocactus Species. Frontiers in Plant Science, 2020, 11, 1314.	1.7	6
18	Alta tecnologia e reúso de materiais descartados: desenvolvimento de um painel decorativo para a	0.1	1

Alta tecnologia e reA^eso de materiais descartados: desenvolvimento de um painel decorativo para a melhoria do desempenho térmico em edificações. Gestão & Tecnologia De Projetos, 2020, 15, 6-19. 0.1 18

CAIO GOMIDE OTONI

#	Article	IF	CITATIONS
19	Upcycling Microbial Cellulose Scraps into Nanowhiskers with Engineered Performance as Fillers in All-Cellulose Composites. ACS Applied Materials & Interfaces, 2020, 12, 46661-46666.	4.0	9
20	Escalating the technical bounds for the production of cellulose-aided peach leathers: From the benchtop to the pilot plant. Carbohydrate Polymers, 2020, 245, 116437.	5.1	5
21	Cogrinding Wood Fibers and Tannins: Surfactant Effects on the Interactions and Properties of Functional Films for Sustainable Packaging Materials. Biomacromolecules, 2020, 21, 1865-1874.	2.6	27
22	Charge Matters: Electrostatic Complexation As a Green Approach to Assemble Advanced Functional Materials. ACS Omega, 2020, 5, 1296-1304.	1.6	24
23	Porous nanocellulose gels and foams: Breakthrough status in the development of scaffolds for tissue engineering. Materials Today, 2020, 37, 126-141.	8.3	134
24	Microbial nanocellulose adherent to human skin used in electrochemical sensors to detect metal ions and biomarkers in sweat. Talanta, 2020, 218, 121153.	2.9	76
25	Combining Cupuassu (<i>Theobroma grandiflorum</i>) Puree, Pectin, and Chitosan Nanoparticles into Novel Edible Films for Food Packaging Applications. Journal of Food Science, 2019, 84, 2228-2233.	1.5	35
26	Nanostructured Antimicrobials in Food Packaging—Recent Advances. Biotechnology Journal, 2019, 14, e1900068.	1.8	46
27	Tailoring the Antimicrobial Response of Cationic Nanocellulose-Based Foams through Cryo-Templating. ACS Applied Bio Materials, 2019, 2, 1975-1986.	2.3	41
28	Nanoemulsions: Synthesis, Characterization, and Application in Bioâ€Based Active Food Packaging. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 264-285.	5.9	133
29	Chemical composition and antibacterial activity of Eugenia brejoensis essential oil nanoemulsions against Pseudomonas fluorescens. LWT - Food Science and Technology, 2018, 93, 659-664.	2.5	30
30	On the effects of hydroxyl substitution degree and molecular weight on mechanical and water barrier properties of hydroxypropyl methylcellulose films. Carbohydrate Polymers, 2018, 185, 105-111.	5.1	31
31	Nanotechnology and Edible Films for Food Packaging Applications. , 2018, , 125-145.		5
32	Nisin and other antimicrobial peptides: Production, mechanisms of action, and application in active food packaging. Innovative Food Science and Emerging Technologies, 2018, 48, 179-194.	2.7	154
33	Optimized and scaled-up production of cellulose-reinforced biodegradable composite films made up of carrot processing waste. Industrial Crops and Products, 2018, 121, 66-72.	2.5	54
34	High-Pressure Microfluidization as a Green Tool for Optimizing the Mechanical Performance of All-Cellulose Composites. ACS Sustainable Chemistry and Engineering, 2018, 6, 12727-12735.	3.2	15
35	Nanoparticles and Antimicrobial Food Packaging. , 2018, , .		5
36	Hydrophobic edible films made up of tomato cutin and pectin. Carbohydrate Polymers, 2017, 164, 83-91.	5.1	92

CAIO GOMIDE OTONI

#	Article	IF	CITATIONS
37	Fabrication of Biocompatible, Functional, and Transparent Hybrid Films Based on Silk Fibroin and Epoxy Silane for Biophotonics. ACS Applied Materials & Interfaces, 2017, 9, 27905-27917.	4.0	18
38	Recent Advances on Edible Films Based on Fruits and Vegetables—A Review. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 1151-1169.	5.9	359
39	Physical Characterization of Biodegradable Films Based on Chitosan, Polyvinyl Alcohol and Opuntia Mucilage. Journal of Polymers and the Environment, 2017, 25, 683-691.	2.4	37
40	Cassava starchâ€based nanocomposites reinforced with cellulose nanofibers extracted from sisal. Journal of Applied Polymer Science, 2017, 134, .	1.3	46
41	Pediocin Applications in Antimicrobial Food Packaging Systems. , 2016, , 445-454.		15
42	Zinc Oxide Nanoparticles for Food Packaging Applications. , 2016, , 425-431.		61
43	Antimicrobial Food Packaging Incorporated with Triclosan. , 2016, , 417-423.		12
44	Cellulose acetate active films incorporated with oregano (Origanum vulgare) essential oil and organophilic montmorillonite clay control the growth of phytopathogenic fungi. Food Packaging and Shelf Life, 2016, 9, 69-78.	3.3	96
45	Probiotics and their potential applications in active edible films and coatings. Food Research International, 2016, 90, 42-52.	2.9	150
46	Mechanical and water barrier properties of isolated soy protein composite edible films as affected by carvacrol and cinnamaldehyde micro and nanoemulsions. Food Hydrocolloids, 2016, 57, 72-79.	5.6	131
47	Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Research International, 2016, 83, 60-73.	2.9	236
48	Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low-methyl pectin films. Food Hydrocolloids, 2016, 52, 732-740.	5.6	126
49	Sliced Bread Preservation through Oregano Essential Oilâ€Containing Sachet. Journal of Food Process Engineering, 2014, 37, 53-62.	1.5	67
50	Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocolloids, 2014, 41, 188-194.	5.6	279
51	Edible Films from Methylcellulose and Nanoemulsions of Clove Bud (<i>Syzygium aromaticum</i>) and Oregano (<i>Origanum vulgare</i>) Essential Oils as Shelf Life Extenders for Sliced Bread. Journal of Agricultural and Food Chemistry, 2014, 62, 5214-5219.	2.4	205
52	Use of Allyl Isothiocyanate-containing Sachets to Reduce <i>Aspergillus flavus</i> Sporulation in Peanuts. Packaging Technology and Science, 2014, 27, 549-558.	1.3	33
53	CO2-enriched atmosphere and supporting material impact the growth, morphophysiology and ultrastructure of in vitro Brazilian-ginseng [Pfaffia glomerata (Spreng.) Pedersen] plantlets. Plant Cell, Tissue and Organ Culture, 2014, 118, 87-99.	1.2	34
54	Antimicrobial and aromatic edible coating on fresh-cut pineapple preservation. Ciencia Rural, 2014, 44, 1119-1125.	0.3	12

#	Article	IF	CITATIONS
55	A CO2-enriched atmosphere improves in vitro growth of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. In Vitro Cellular and Developmental Biology - Plant, 2013, 49, 433-444.	0.9	33
56	Ultravioletâ€B Radiation Induced Crossâ€linking Improves Physical Properties of Cold―and Warmâ€Water Fish Gelatin Gels and Films. Journal of Food Science, 2012, 77, E215-23.	1.5	53
57	A low-cost alternative membrane system that promotes growth in nodal cultures of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell, Tissue and Organ Culture, 2012, 110, 413-422.	1.2	56
58	Effect of shrinkage on isothermal drying behavior of 2-phase olive mill waste. Journal of Food Engineering, 2011, 103, 434-441.	2.7	37
59	Miniaturization of cellulose fibers and effect of addition on the mechanical and barrier properties of hydroxypropyl methylcellulose films. Journal of Food Engineering, 2011, 104, 154-160.	2.7	32
60	Tailoring Breadfruit (Artocarpus altilis) Starch: Crossâ€Linking Starch from this Nonâ€Conventional Source Towards Improved Technologically Relevant Properties and Enabled Food Applications. Starch/Staerke, 0, , 2100058.	1.1	2
61	Estudo de modificações superficiais em criogéis de celulose nanofibrilada e efeito na adsorção de polieletrólitos. , 0, , .		0