Aveliina Helm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8300525/publications.pdf Version: 2024-02-01

Δυειινία Ηείμ

#	Article	IF	CITATIONS
1	Extinction debt: a challenge for biodiversity conservation. Trends in Ecology and Evolution, 2009, 24, 564-571.	8.7	1,053
2	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
3	Habitat fragmentation causes immediate and timeâ€delayed biodiversity loss at different trophic levels. Ecology Letters, 2010, 13, 597-605.	6.4	620
4	Slow response of plant species richness to habitat loss and fragmentation. Ecology Letters, 2005, 9, 051109031307003.	6.4	437
5	Invasions: the trail behind, the path ahead, and a test of a disturbing idea. Journal of Ecology, 2012, 100, 116-127.	4.0	180
6	Harnessing the biodiversity value of Central and Eastern European farmland. Diversity and Distributions, 2015, 21, 722-730.	4.1	172
7	Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytologist, 2021, 231, 763-776.	7.3	126
8	Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4218-4227.	7.1	108
9	Grassland diversity related to the Late Iron Age human population density. Journal of Ecology, 2007, 95, 574-582.	4.0	95
10	Which plant traits predict species loss in calcareous grasslands with extinction debt?. Diversity and Distributions, 2012, 18, 808-817.	4.1	94
11	Indirect evidence for an extinction debt of grassland butterflies half century after habitat loss. Biological Conservation, 2010, 143, 1405-1413.	4.1	89
12	Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Global Ecology and Biogeography, 2017, 26, 690-699.	5.8	84
13	Effect of habitat area and isolation on plant trait distribution in European forests and grasslands. Ecography, 2012, 35, 356-363.	4.5	78
14	Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss. Diversity and Distributions, 2012, 18, 898-908.	4.1	70
15	Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?. Global Change Biology, 2013, 19, 3677-3687.	9.5	70
16	Human influence lowers plant genetic diversity in communities with extinction debt. Journal of Ecology, 2009, 97, 1329-1336.	4.0	67
17	Conservation of Northern European plant diversity: the correspondence with soil pH. Biological Conservation, 2004, 120, 525-531.	4.1	64
18	Ecological theory provides strong support for habitat restoration. Biological Conservation, 2017, 206, 85-91.	4.1	64

Aveliina Helm

#	Article	IF	CITATIONS
19	Restoration of plant species and genetic diversity depends on landscapeâ€scale dispersal. Restoration Ecology, 2018, 26, S92.	2.9	62
20	Dark diversity in dry calcareous grasslands is determined by dispersal ability and stressâ€ŧolerance. Ecography, 2015, 38, 713-721.	4.5	57
21	Landscape―and smallâ€scale determinants of grassland species diversity: direct and indirect influences. Ecography, 2012, 35, 944-951.	4.5	52
22	Characteristic and derived diversity: implementing the species pool concept to quantify conservation condition of habitats. Diversity and Distributions, 2015, 21, 711-721.	4.1	52
23	Beyond the species pool: modification of species dispersal, establishment, and assembly by habitat restoration. Restoration Ecology, 2018, 26, S65.	2.9	45
24	Patterns of modern pollen and plant richness across northern Europe. Journal of Ecology, 2019, 107, 1662-1677.	4.0	40
25	Invasion of woody species into temperate grasslands: Relationship with abiotic and biotic soil resource heterogeneity. Journal of Vegetation Science, 2007, 18, 63-70.	2.2	36
26	Benchmarking plant diversity of Palaearctic grasslands and other open habitats. Journal of Vegetation Science, 2021, 32, e13050.	2.2	34
27	Determinants of fine-scale plant diversity in dry calcareous grasslands within the Baltic Sea region. Agriculture, Ecosystems and Environment, 2014, 182, 59-68.	5.3	29
28	Assessing coexisting plant extinction debt and colonization credit in a grassland–forest change gradient. Oecologia, 2015, 179, 823-834.	2.0	28
29	Current climate overrides historical effects on species richness and range size of freshwater plants in Europe and North America. Journal of Ecology, 2020, 108, 1262-1275.	4.0	28
30	Urgent need for updating the slogan of global climate actions from "tree planting―to "restore native vegetation― Restoration Ecology, 2022, 30, e13594.	2.9	27
31	Soil eutrophication shaped the composition of pollinator assemblages during the past century. Ecography, 2020, 43, 209-221.	4.5	26
32	Trait assembly in grasslands depends on habitat history and spatial scale. Oecologia, 2017, 184, 1-12.	2.0	21
33	Phenotypic plasticity masks rangeâ€wide genetic differentiation for vegetative but not reproductive traits in a shortâ€lived plant. Ecology Letters, 2021, 24, 2378-2393.	6.4	21
34	Diversity of lichens and bryophytes in hybrid aspen plantations in Estonia depends on landscape structure. Canadian Journal of Forest Research, 2017, 47, 1202-1214.	1.7	19
35	Beyond land cover: How integrated remote sensing and social media data analysis facilitates assessment of cultural ecosystem services. Ecosystem Services, 2022, 53, 101391.	5.4	19
36	Forest biomass, soil and biodiversity relationships originate from biogeographic affinity and direct ecological effects. Oikos, 2019, 128, 1653-1665.	2.7	16

Aveliina Helm

#	Article	IF	CITATIONS
37	EstSoil-EH: a high-resolution eco-hydrological modelling parameters dataset for Estonia. Earth System Science Data, 2021, 13, 83-97.	9.9	15
38	Threatened Alvar Grasslands in NW Russia and their Relationship to Alvars in Estonia. Biodiversity and Conservation, 2006, 15, 1797-1809.	2.6	14
39	Extinction debt in a common grassland species: immediate and delayed responses of plant and population fitness. Plant Ecology, 2013, 214, 953-963.	1.6	13
40	Rapid plant colonization of the forelands of a vanishing glacier is strongly associated with species traits. Arctic, Antarctic, and Alpine Research, 2019, 51, 366-378.	1.1	12
41	Hybrid ecosystems can contribute to local biodiversity conservation. Biodiversity and Conservation, 2016, 25, 3023-3041.	2.6	8
42	Ground-Dwelling Spider Fauna of Flooded Meadows in Matsalu, Estonia. Wetlands, 2016, 36, 525-537.	1.5	8
43	Landscape context and plant population size affect morph frequencies in heterostylous <i>Primula veris</i> —Results of a nationwide citizenâ€science campaign. Journal of Ecology, 2020, 108, 2169-2183.	4.0	8
44	Traits as determinants of species abundance in a grassland community. Journal of Vegetation Science, 2021, 32, e13041.	2.2	8
45	Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally. Ecology and Evolution, 2021, 11, 17744-17761.	1.9	8
46	Habitat restoration requires landscapeâ€scale planning. Applied Vegetation Science, 2015, 18, 177-178.	1.9	7
47	Rarity in freshwater vascular plants across Europe and North America: Patterns, mechanisms and future scenarios. Science of the Total Environment, 2021, 786, 147491.	8.0	7
48	Semi-natural habitats in the European boreal region: Caught in the socio-ecological extinction vortex?. Ambio, 2022, 51, 1753-1763.	5.5	7
49	Landscapes, management practices and their interactions shape soil fungal diversity in arable fields – Evidence from a nationwide farmers' network. Soil Biology and Biochemistry, 2022, 168, 108652.	8.8	7
50	Landscape genetic analysis suggests stronger effects of past than current landscape structure on genetic patterns of <i>Primula veris</i> . Diversity and Distributions, 2021, 27, 1648-1662.	4.1	5
51	Vegetation patterns and their underlying processes: where are we now?. Journal of Vegetation Science, 2014, 25, 1113-1116.	2.2	4
52	Little evidence of range size conservatism in freshwater plants across two continents. Journal of Biogeography, 2021, 48, 1200-1212.	3.0	4
53	Invasion of woody species into temperate grasslands: Relationship with abiotic and biotic soil resource heterogeneity. Journal of Vegetation Science, 2007, 18, 63.	2.2	2
54	Do Landscape Dissimilarity and Environmental Factors Affect Genetic and Phenotypic Variability in <i>Myosotis laxa s. lato</i> (Boraginaceae)?. Annales Botanici Fennici, 2016, 53, 56-66.	0.1	0

#	Article	IF	CITATIONS
55	EU Nature Restoration Law needs ambitious and binding targets. Nature, 2022, 601, 191-191.	27.8	0