Rajiv Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8300381/publications.pdf

Version: 2024-02-01

43 papers 2,128 citations

257357 24 h-index 243529 44 g-index

44 all docs 44 docs citations

44 times ranked 2889 citing authors

#	Article	IF	Citations
1	Amphiregulin in cellular physiology, health, and disease: Potential use as a biomarker and therapeutic target. Journal of Cellular Physiology, 2022, 237, 1143-1156.	2.0	17
2	Emerging role of $\hat{l}^3\hat{l}'T$ cells in protozoan infection and their potential clinical application. Infection, Genetics and Evolution, 2022, 98, 105210.	1.0	6
3	Increased amphiregulin expression by CD4 $<$ sup $>+sup>T cells from individuals with asymptomatic <i>Leishmania donovani<ii>infection. Clinical and Translational Immunology, 2022, 11, .$	1.7	5
4	Anti–Interleukin-10 Unleashes Transcriptional Response to Leishmanial Antigens in Visceral Leishmaniasis Patients. Journal of Infectious Diseases, 2021, 223, 517-521.	1.9	5
5	Mass Spectrometry-Based Technology and Workflows for Studying the Chemistry of Fungal Endophyte Derived Bioactive Compounds. ACS Chemical Biology, 2021, 16, 2068-2086.	1.6	16
6	The regulation of CD4 + T cells during malaria. Immunological Reviews, 2020, 293, 70-87.	2.8	29
7	The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation. Nature Immunology, 2020, 21, 1205-1218.	7.0	110
8	Immunoselective algorithm to devise multi-epitope subunit vaccine fighting against human cytomegalovirus infection. Infection, Genetics and Evolution, 2020, 82, 104282.	1.0	7
9	Type I Interferons Suppress Anti-parasitic Immunity and Can Be Targeted to Improve Treatment of Visceral Leishmaniasis. Cell Reports, 2020, 30, 2512-2525.e9.	2.9	34
10	IL-10 and TGF-Î ² Induced Arginase Expression Contributes to Deficient Nitric Oxide Response in Human Visceral Leishmaniasis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 614165.	1.8	10
11	A molecular signature for CD8 < sup > + < /sup > T cells from visceral leishmaniasis patients. Parasite Immunology, 2019, 41, e12669.	0.7	12
12	Interleukin 2 is an Upstream Regulator of CD4+ T Cells From Visceral Leishmaniasis Patients With Therapeutic Potential. Journal of Infectious Diseases, 2019, 220, 163-173.	1.9	8
13	The Role of IL-10 in Malaria: A Double Edged Sword. Frontiers in Immunology, 2019, 10, 229.	2.2	87
14	Rapid loss of group 1 innate lymphoid cells during blood stage Plasmodium infection. Clinical and Translational Immunology, $2018, 7, e1003$.	1.7	16
15	The Role of BACH2 in T Cells in Experimental Malaria Caused by Plasmodium chabaudi chabaudi AS. Frontiers in Immunology, 2018, 9, 2578.	2.2	5
16	Distinct Roles for CD4+ Foxp3+ Regulatory T Cells and IL-10–Mediated Immunoregulatory Mechanisms during Experimental Visceral Leishmaniasis Caused by ⟨i⟩Leishmania donovani⟨/i⟩. Journal of Immunology, 2018, 201, 3362-3372.	0.4	34
17	Peripheral Blood Monocytes With an Antiinflammatory Phenotype Display Limited Phagocytosis and Oxidative Burst in Patients With Visceral Leishmaniasis. Journal of Infectious Diseases, 2018, 218, 1130-1141.	1.9	17
18	Particle induced X-ray emission study of blood samples of Indian Kala-azar patients. Journal of Parasitic Diseases, 2017, 41, 193-198.	0.4	4

#	Article	lF	CITATIONS
19	Galectin-1 Impairs the Generation of Anti-Parasitic Th1 Cell Responses in the Liver during Experimental Visceral Leishmaniasis. Frontiers in Immunology, 2017, 8, 1307.	2.2	9
20	Immune Checkpoint Targets for Host-Directed Therapy to Prevent and Treat Leishmaniasis. Frontiers in Immunology, 2017, 8, 1492.	2.2	33
21	The Phenotype of Circulating Neutrophils during Visceral Leishmaniasis. American Journal of Tropical Medicine and Hygiene, 2017, 97, 767-770.	0.6	13
22	Combined Immune Therapy for the Treatment of Visceral Leishmaniasis. PLoS Neglected Tropical Diseases, 2016, 10, e0004415.	1.3	33
23	Tumor necrosis factor alpha neutralization has no direct effect on parasite burden, but causes impaired IFN- \hat{I}^3 production by spleen cells from human visceral leishmaniasis patients. Cytokine, 2016, 85, 184-190.	1.4	10
24	Type I Interferons Regulate Immune Responses in Humans with Blood-Stage Plasmodium falciparum Infection. Cell Reports, 2016, 17, 399-412.	2.9	88
25	Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology. PLoS Pathogens, 2016, 12, e1005398.	2.1	92
26	IL-17A–Producing γδT Cells Suppress Early Control of Parasite Growth by Monocytes in the Liver. Journal of Immunology, 2015, 195, 5707-5717.	0.4	25
27	Significantly Lower Anti-Leishmania IgG Responses in Sudanese versus Indian Visceral Leishmaniasis. PLoS Neglected Tropical Diseases, 2014, 8, e2675.	1.3	40
28	Leishmania Specific CD4 T Cells Release IFNÎ ³ That Limits Parasite Replication in Patients with Visceral Leishmaniasis. PLoS Neglected Tropical Diseases, 2014, 8, e3198.	1.3	63
29	lgG1 as a Potential Biomarker of Post-chemotherapeutic Relapse in Visceral Leishmaniasis, and Adaptation to a Rapid Diagnostic Test. PLoS Neglected Tropical Diseases, 2014, 8, e3273.	1.3	48
30	Immune Regulation during Chronic Visceral Leishmaniasis. PLoS Neglected Tropical Diseases, 2014, 8, e2914.	1.3	112
31	Vaccines to prevent leishmaniasis. Clinical and Translational Immunology, 2014, 3, e13.	1.7	142
32	CD8 T Cell Exhaustion in Human Visceral Leishmaniasis. Journal of Infectious Diseases, 2014, 209, 290-299.	1.9	120
33	Mast cells fuel the fire of malaria immunopathology. Nature Medicine, 2013, 19, 672-674.	15.2	13
34	Immunobiology of visceral leishmaniasis. Frontiers in Immunology, 2012, 3, 251.	2.2	159
35	Reassessment of Immune Correlates in Human Visceral Leishmaniasis as Defined by Cytokine Release in Whole Blood. Vaccine Journal, 2012, 19, 961-966.	3.2	92
36	Evaluation of rk39 immunochromatographic test with urine for diagnosis of visceral leishmaniasis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2011, 105, 537-539.	0.7	12

#	Article	IF	CITATIONS
37	Persistence of Leishmania donovani Antibodies in Past Visceral Leishmaniasis Cases in India. Vaccine Journal, 2011, 18, 346-348.	3.2	69
38	IL-27 and IL-21 Are Associated with T Cell IL-10 Responses in Human Visceral Leishmaniasis. Journal of Immunology, 2011, 186, 3977-3985.	0.4	130
39	Interferon-Gamma Release Assay (Modified QuantiFERON) as a Potential Marker of Infection for Leishmania donovani, a Proof of Concept Study. PLoS Neglected Tropical Diseases, 2011, 5, e1042.	1.3	45
40	IL-10 Neutralization Promotes Parasite Clearance in Splenic Aspirate Cells From Patients With Visceral Leishmaniasis. Journal of Infectious Diseases, 2011, 204, 1134-1137.	1.9	166
41	Longlasting insecticidal nets for prevention of Leishmania donovani infection in India and Nepal: paired cluster randomised trial. BMJ: British Medical Journal, 2010, 341, c6760-c6760.	2.4	95
42	Evaluation of Ex Vivo Human Immune Response against Candidate Antigens for a Visceral Leishmaniasis Vaccine. American Journal of Tropical Medicine and Hygiene, 2010, 82, 808-813.	0.6	32
43	Measurement of Recent Exposure to Phlebotomus argentipes, the Vector of Indian Visceral Leishmaniasis, by Using Human Antibody Responses to Sand Fly Saliva. American Journal of Tropical Medicine and Hygiene, 2010, 82, 801-807.	0.6	57