
Burkhard Horstkotte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8300295/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lab in a syringe: fully automated dispersive liquid–liquid microextraction with integrated spectrophotometric detection. Analytical and Bioanalytical Chemistry, 2012, 404, 909-917.	1.9	90
2	Automation of static and dynamic non-dispersive liquid phase microextraction. Part 1: Approaches based on extractant drop-, plug-, film- and microflow-formation. Analytica Chimica Acta, 2016, 906, 22-40.	2.6	85
3	Automation of dispersive liquid–liquid microextraction and related techniques. Approaches based on flow, batch, flow-batch and in-syringe modes. TrAC - Trends in Analytical Chemistry, 2017, 86, 39-55.	5.8	84
4	Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: Approaches based on impregnated membranes and porous supports. Analytica Chimica Acta, 2016, 907, 18-30.	2.6	79
5	In-syringe-stirring: A novel approach for magnetic stirring-assisted dispersive liquid–liquid microextraction. Analytica Chimica Acta, 2013, 788, 52-60.	2.6	77
6	Automated in-syringe dispersive liquid-liquid microextraction. TrAC - Trends in Analytical Chemistry, 2014, 59, 1-8.	5.8	75
7	An environmental friendly method for the automatic determination of hypochlorite in commercial products using multisyringe flow injection analysis. Analytica Chimica Acta, 2008, 611, 182-186.	2.6	69
8	Automatic determination of copper by in-syringe dispersive liquid–liquid microextraction of its bathocuproine-complex using long path-length spectrophotometric detection. Talanta, 2012, 99, 349-356.	2.9	67
9	A robust multisyringe system for process flow analysis. Analyst, The, 1999, 124, 1373-1381.	1.7	65
10	Drivers of fluorescent dissolved organic matter in the global epipelagic ocean. Limnology and Oceanography, 2016, 61, 1101-1119.	1.6	53
11	Fully-Automated Fluorimetric Determination of Aluminum in Seawater by In-Syringe Dispersive Liquid–Liquid Microextraction Using Lumogallion. Analytical Chemistry, 2012, 84, 9462-9469.	3.2	49
12	Automated in-syringe single-drop head-space micro-extraction applied to the determination of ethanol in wine samples. Analytica Chimica Acta, 2014, 828, 53-60.	2.6	46
13	A miniature and field-applicable multipumping flow analyzer for ammonium monitoring in seawater with fluorescence detection. Talanta, 2011, 85, 380-385.	2.9	39
14	In-syringe magnetic-stirring-assisted liquid–liquid microextraction for the spectrophotometric determination of Cr(VI) in waters. Analytical and Bioanalytical Chemistry, 2013, 405, 6761-6769.	1.9	39
15	Direct-immersion single-drop microextraction and in-drop stirring microextraction for the determination of nanomolar concentrations of lead using automated Lab-In-Syringe technique. Talanta, 2018, 184, 162-172.	2.9	39
16	Lab-In-Syringe for automated double-stage sample preparation by coupling salting out liquid-liquid extraction with online solid-phase extraction and liquid chromatographic separation for sulfonamide antibiotics from urine. Talanta, 2021, 221, 121427.	2.9	37
17	A novel approach to Lab-In-Syringe Head-Space Single-Drop Microextraction and on-drop sensing of ammonia. Analytica Chimica Acta, 2016, 934, 132-144.	2.6	36
18	A flow-based platform hyphenated to on-line liquid chromatography for automatic leaching tests of chemical additives from microplastics into seawater. Journal of Chromatography A, 2019, 1602, 160-167.	1.8	35

#	Article	IF	CITATIONS
19	In-syringe magnetic stirring assisted dispersive liquid–liquid micro-extraction with solvent washing for fully automated determination of cationic surfactants. Analytical Methods, 2014, 6, 9601-9609.	1.3	30
20	Fully Automatic In-Syringe Magnetic Stirring-Assisted Dispersive Liquid–Liquid Microextraction Hyphenated to High-Temperature Torch Integrated Sample Introduction System-Inductively Coupled Plasma Spectrometer with Direct Injection of the Organic Phase. Analytical Chemistry, 2017, 89, 3787-3794.	3.2	30
21	Multisyringe flow injection analysis coupled to capillary electrophoresis (MSFIA–CE) as a novel analytical tool applied to the pre-concentration, separation and determination of nitrophenols. Talanta, 2008, 76, 72-79.	2.9	29
22	In-syringe magnetic stirring-assisted dispersive liquid–liquid microextraction for automation and downscaling of methylene blue active substances assay. Talanta, 2014, 130, 555-560.	2.9	29
23	Where are modern flow techniques heading to?. Analytical and Bioanalytical Chemistry, 2018, 410, 6361-6370.	1.9	29
24	A miniaturized analyzer for the catalytic determination of iodide in seawater and pharmaceutical samples. Talanta, 2013, 108, 92-102.	2.9	28
25	A highly reproducible solenoid micropump system for the analysis of total inorganic carbon and ammonium using gas-diffusion with conductimetric detection. Talanta, 2014, 118, 186-194.	2.9	27
26	Fish Species Identification by Means of Restriction Fragment Length Polymorphism and High-Performance Liquid Chromatography. Journal of Food Science, 2003, 68, 2658-2666.	1.5	26
27	Lab-In-Syringe automation of deep eutectic solvent-based direct immersion single drop microextraction coupled online to high-performance liquid chromatography for the determination of fluoroquinolones. Talanta, 2022, 246, 123476.	2.9	26
28	Determination of ppb-level phenol index using in-syringe dispersive liquid-liquid microextraction and liquid waveguide capillary cell spectrophotometry. Mikrochimica Acta, 2012, 179, 91-98.	2.5	24
29	Antarctic krill as a source of dissolved organic carbon to the Antarctic ecosystem. Limnology and Oceanography, 2011, 56, 521-528.	1.6	23
30	The Automation Technique Lab-In-Syringe: A Practical Guide. Molecules, 2020, 25, 1612.	1.7	23
31	Changes in the C, N, and P cycles by the predicted salps-krill shift in the southern ocean. Frontiers in Marine Science, 2014, 1, .	1.2	22
32	Online coupling of fully automatic in-syringe dispersive liquid-liquid microextraction with oxidative back-extraction to inductively coupled plasma spectrometry for sample clean-up in elemental analysis: A proof of concept. Talanta, 2017, 173, 79-87.	2.9	22
33	3D-Printed Magnetic Stirring Cages for Semidispersive Extraction of Bisphenols from Water Using Polymer Micro- and Nanofibers. Analytical Chemistry, 2020, 92, 3964-3971.	3.2	21
34	Development of a capillary electrophoresis system coupled to sequential injection analysis and evaluation by the analysis of nitrophenols. International Journal of Environmental Analytical Chemistry, 2007, 87, 797-811.	1.8	19
35	Conductometric determination of ammonium by a multisyringe flow injection system applying gas diffusion. International Journal of Environmental Analytical Chemistry, 2013, 93, 1236-1252.	1.8	18
36	Monitoring of sorbitol in Pichia pastoris cultivation applying sequential injection analysis. Biochemical Engineering Journal, 2008, 42, 77-83.	1.8	17

#	Article	IF	CITATIONS
37	Sequential Injection Chromatography with post-column reaction/derivatization for the determination of transition metal cations in natural water samples. Talanta, 2015, 136, 75-83.	2.9	15
38	Large volume preconcentration and determination of nanomolar concentrations of iron in seawater using a renewable cellulose 8-hydroquinoline sorbent microcolumn and universal approach of post-column eluate utilization in a Lab-on-Valve system. Talanta, 2016, 150, 213-223.	2.9	15
39	Fully automated analytical procedure for propofol determination by sequential injection technique with spectrophotometric and fluorimetric detections. Talanta, 2014, 118, 104-110.	2.9	13
40	At-line determination of formaldehyde in bioprocesses by sequential injection analysis. Analytica Chimica Acta, 2006, 559, 248-256.	2.6	12
41	Sequential injection analysis for automation of the Winkler methodology, with real-time SIMPLEX optimization and shipboard application. Analytica Chimica Acta, 2010, 658, 147-155.	2.6	12
42	Response functions for SIMPLEX optimization of flow-injection analysis and related techniques. TrAC - Trends in Analytical Chemistry, 2010, 29, 1224-1235.	5.8	12
43	Lab-In-Syringe automation of stirring-assisted room-temperature headspace extraction coupled online to gas chromatography with flame ionization detection for determination of benzene, toluene, ethylbenzene, and xylenes in surface waters. Journal of Chromatography A, 2018, 1555, 1-9.	1.8	12
44	Automated continuous-flow in-syringe dispersive liquid-liquid microextraction of mono-nitrophenols from large sample volumes using a novel approach to multivariate spectral analysis. Talanta, 2019, 202, 11-20.	2.9	12
45	Renewable sorbent dispersive solid phase extraction automated by Lab-In-Syringe using magnetite-functionalized hydrophilic-lipophilic balanced sorbent coupled online to HPLC for determination of surface water contaminants. Analytica Chimica Acta, 2022, 1210, 339874.	2.6	12
46	Screening of extraction properties of nanofibers in a sequential injection analysis system using a 3D printed device. Talanta, 2019, 197, 517-521.	2.9	11
47	Sweeping-micellar electrokinetic chromatography with tandem mass spectrometry as an alternative methodology to determine neonicotinoid and boscalid residues in pollen and honeybee samples. Journal of Chromatography A, 2022, 1672, 463023.	1.8	11
48	A multisyringe flow injection Winkler-based spectrophotometric analyzer for in-line monitoring of dissolved oxygen in seawater. Talanta, 2010, 80, 1341-1346.	2.9	10
49	Chip-On-Valve Concept: An Integrated Platform for Multisyringe Flow Injection Analysis: Application to Nitrite and Nitrate Determination in Seawater. Analytical Letters, 2013, 46, 2345-2358.	1.0	10
50	Sequential injection analyzer for glycerol monitoring in yeast cultivation medium. Talanta, 2007, 71, 941-947.	2.9	9
51	Coupling of Flow Techniques with Capillary Electrophoresis: Review of Operation Principles, Challenges, Potentials, and Applications. Journal of Chromatographic Science, 2009, 47, 636-647.	0.7	9
52	Improving Pressure Robustness, Reliability, and Versatility of Solenoid-Pump Flow Systems Using a Miniature Economic Control Unit Including Two Simple Pressure Pulse Mathematical Models. Analytical Chemistry, 2010, 82, 6983-6990.	3.2	9
53	Titanium determination by multisyringe flow injection analysis system and a liquid waveguide capillary cell in solid and liquid environmental samples. Marine Pollution Bulletin, 2013, 76, 89-94.	2.3	9
54	Prototyping of a Microfluidic Modulator Chip and Its Application in Heart-Cut Strong-Cation-Exchange-Reversed-Phase Liquid Chromatography Coupled to Nanoelectrospray Mass Spectrometry for Targeted Proteomics. Analytical Chemistry, 2020, 92, 2388-2392.	3.2	8

BURKHARD HORSTKOTTE

#	Article	IF	CITATIONS
55	Determination of DNA content of whole fish. Fisheries Science, 2006, 72, 429-436.	0.7	5
56	Zeolitic imidazolate frameworks in analytical sample preparation. Journal of Separation Science, 2021, 44, 1203-1219.	1.3	5
57	Recent trends on the implementation of reticular materials in columnâ€centered separations. Journal of Separation Science, 2022, 45, 1411-1424.	1.3	5
58	Nanofibrous Online Solid-Phase Extraction Coupled with Liquid Chromatography for the Determination of Neonicotinoid Pesticides in River Waters. Membranes, 2022, 12, 648.	1.4	5
59	Multipumping flow systems devoid of computer control for process and environmental monitoring. International Journal of Environmental Analytical Chemistry, 2012, 92, 344-354.	1.8	4
60	Flow-batch analysis of clenbuterol based on analyte extraction on molecularly imprinted polymers coupled to an in-system chromogenic reaction. Application to human urine and milk substitute samples. Talanta, 2018, 178, 934-942.	2.9	4
61	Lab-In-Syringe with Bead Injection Coupled Online to High-Performance Liquid Chromatography as Versatile Tool for Determination of Nonsteroidal Anti-Inflammatory Drugs in Surface Waters. Molecules, 2021, 26, 5358.	1.7	4
62	3D printed permeation module to monitor interaction of cell membrane transporters with exogenic compounds in real-time. Analytica Chimica Acta, 2021, 1153, 338296.	2.6	1
63	Real-time monitoring of Metridia luciferase release from cells upon interaction with model toxic substances by a fully automatic flow setup – A proof of concept. Talanta, 2022, 245, 123465.	2.9	1