Zeng-Xing Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8300272/publications.pdf

Version: 2024-02-01

567281 610901 24 801 15 24 citations h-index g-index papers 24 24 24 290 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Absorption of magnons in dispersively coupled hybrid quantum systems. Physical Review A, 2021, 103, .	2.5	18
2	Quantum Coherence Regulated by Nanoparticles in a Whisperingâ€Galleryâ€Mode Microresonator. Annalen Der Physik, 2021, 533, 2100210.	2.4	6
3	Nanoparticle-mediated chiral light chaos based on non-Hermitian mode coupling. Nanoscale, 2020, 12, 2118-2125.	5.6	12
4	Magnon laser based on Brillouin light scattering. Optics Letters, 2020, 45, 5452.	3.3	29
5	Magnetic-field-controlled magnon chaos in an active cavity-magnon system. Laser Physics Letters, 2019, 16, 045208.	1.4	15
6	Quantitative Analysis of Magnon Induced Second-Order Sideband Generation. IEEE Access, 2019, 7, 115574-115582.	4.2	2
7	Magnon blockade in a hybrid ferromagnet-superconductor quantum system. Physical Review B, 2019, 100, .	3.2	109
8	Room-Temperature Slow Light in a Coupled Cavity Magnon-Photon System. IEEE Access, 2019, 7, 57047-57053.	4.2	23
9	Magnetically controllable slow light based on magnetostrictive forces. Optics Express, 2019, 27, 5544.	3.4	69
10	Mechanical exceptional-point-induced transparency and slow light. Optics Express, 2019, 27, 8069.	3.4	33
11	Phase-mediated magnon chaos-order transition in cavity optomagnonics. Optics Letters, 2019, 44, 507.	3.3	47
12	Tunable optical amplification arising from blue detuning in a quadratically coupled optomechanical system. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1355.	2.1	5
13	Highly Sensitive Optical Detector for Precision Measurement of Coulomb Coupling Strength Based on a Double-Oscillator Optomechanical System. IEEE Photonics Journal, 2018, 10, 1-11.	2.0	7
14	Generation and amplification of a high-order sideband induced by two-level atoms in a hybrid optomechanical system. Physical Review A, 2018, 97, .	2.5	60
15	Magnetic-field-dependent slow light in strontium atom-cavity system. Applied Physics Letters, 2018, 112,	3.3	35
16	Highly Sensitive Charge Sensor Based on Atom-Assisted High-Order Sideband Generation in a Hybrid Optomechanical System. Sensors, 2018, 18, 3833.	3.8	13
17	Precision Measurement of Magnetic Field Based on Second-Order Sideband Generation in a Hybrid Electromagnetic-Optomechanical System. IEEE Sensors Journal, 2018, 18, 9145-9150.	4.7	11
18	High-order sideband generation in a two-cavity optomechanical system with modulated photon-hopping interaction. Laser Physics Letters, 2018, 15, 115401.	1.4	9

ZENG-XING LIU

#	Article	IF	CITATION
19	Highly Sensitive Mass Sensing by Means of the Optomechanical Nonlinearity. IEEE Photonics Journal, 2018, 10, 1-8.	2.0	8
20	Polarization-based control of phonon laser action in a ÂParity Time-symmetric optomechanical system. Communications Physics, 2018,1,.	5. 3	22
21	Magnon-induced transparency and amplification in ??-symmetric cavity-magnon system. Optics Express, 2018, 26, 20248.	3.4	87
22	Magnon-induced high-order sideband generation. Optics Letters, 2018, 43, 3698.	3.3	67
23	A proposed method to measure weak magnetic field based on a hybrid optomechanical system. Scientific Reports, 2017, 7, 12521.	3.3	38
24	Highly sensitive optical sensor for precision measurement of electrical charges based on optomechanically induced difference-sideband generation. Optics Letters, 2017, 42, 3630.	3.3	76