Prakash R Rai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8300149/publications.pdf Version: 2024-02-01

DDAKACH D DAL

#	Article	IF	CITATIONS
1	Synergistic Action of Gefitinib and GSK41364A Simultaneously Loaded in Ratiometrically-Engineered Polymeric Nanoparticles for Glioblastoma Multiforme. Journal of Clinical Medicine, 2019, 8, 367.	2.4	12
2	Concluding Remarks and theÂFuture of Nanotheranostics. Bioanalysis, 2019, , 461-470.	0.1	0
3	Remotely Phototriggered, Transferrinâ€Targeted Polymeric Nanoparticles for the Treatment of Breast Cancer. Photochemistry and Photobiology, 2018, 94, 765-774.	2.5	25
4	Co-Administered Polymeric Nano-Antidotes for Improved Photo-Triggered Response in Glioblastoma. Pharmaceutics, 2018, 10, 226.	4.5	15
5	GSK461364A, a Polo-Like Kinase-1 Inhibitor Encapsulated in Polymeric Nanoparticles for the Treatment of Glioblastoma Multiforme (GBM). Bioengineering, 2018, 5, 83.	3.5	10
6	Liposomes Aid Curcumin's Combat with Cancer in a Breast Tumor Model. Oncomedicine, 2018, 3, 94-109.	1.1	10
7	Cancer nanomedicine: a review of recent success in drug delivery. Clinical and Translational Medicine, 2017, 6, 44.	4.0	703
8	Targeting Strategies for the Combination Treatment of Cancer Using Drug Delivery Systems. Pharmaceutics, 2017, 9, 46.	4.5	116
9	Remotely Triggered Nano-Theranostics For Cancer Applications. Nanotheranostics, 2017, 1, 1-22.	5.2	90
10	Engineering Remotely Triggered Liposomes to Target Triple Negative Breast Cancer. Oncomedicine, 2017, 2, 1-13.	1.1	20
11	Nanoparticle Design Strategies for Effective Cancer Immunotherapy. Journal of Biomedicine (Sydney,) Tj ETQq1	1 0,78431 1.4	4 rg8T /Overl
12	Targeting Cancer using Polymeric Nanoparticle mediated Combination Chemotherapy. International Journal of Nanomedicine and Nanosurgery, 2016, 2, .	0.3	28
13	Nanoparticles for Effective Combination Therapy of Cancer. , 2016, 1, .		6
14	Development and applications of photo-triggered theranostic agents. Advanced Drug Delivery Reviews, 2010, 62, 1094-1124.	13.7	458
15	Ki-67 as a Molecular Target for Therapy in an <i>In vitro</i> Three-Dimensional Model for Ovarian Cancer. Cancer Research, 2010, 70, 9234-9242.	0.9	72
16	Abstract A127: Combination therapy targeting EGFR/MET crosstalk using nanotechnology improves photodynamic therapy treatment of pancreatic cancer. , 2009, , .		3
17	The Design of Polyvalent Therapeutics. Chemistry - A European Journal, 2008, 14, 7738-7747.	3.3	57
18	Stable and Potent Polyvalent Anthrax Toxin Inhibitors: Raftâ€Inspired Domain Formation in Liposomes that Contain PEGylated Lipids. Chemistry - A European Journal, 2008, 14, 7748-7751.	3.3	13

Prakash R Rai

#	Article	IF	CITATIONS
19	Receptor-based identification of an inhibitory peptide against blood stage malaria. Biochemical and Biophysical Research Communications, 2008, 376, 489-493.	2.1	2
20	Statistical pattern matching facilitates the design of polyvalent inhibitors of anthrax and cholera toxins. Nature Biotechnology, 2006, 24, 582-586.	17.5	79
21	Polyvalent inhibitors of anthrax toxin that target host receptors. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13509-13513.	7.1	74
22	Design of water-soluble, thiol-reactive polymers of controlled molecular weight: a novel multivalent scaffold. Nanotechnology, 2005, 16, S416-S421.	2.6	26