Glenn Merrill-Skoloff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8300092/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The secreted tyrosine kinase VLK is essential for normal platelet activation and thrombus formation. Blood, 2022, 139, 104-117.	1.4	6
2	Calpain-1 inhibition attenuates in vivo thrombosis in a humanized model of sickle cell disease. Thrombosis Research, 2022, 211, 123-126.	1.7	0
3	Microvesicles, but not platelets, bud off from mouse bone marrow megakaryocytes. Blood, 2021, 138, 1998-2001.	1.4	6
4	Enhanced Thrombotic Responses Are Associated With Striatin Deficiency and Aldosterone. Journal of the American Heart Association, 2021, 10, e022975.	3.7	8
5	Injury Length and Arteriole Constriction Shape Clot Growth and Blood-Flow Acceleration in a Mouse Model of Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2114-2126.	2.4	3
6	Injury measurements improve interpretation of thrombus formation data in the cremaster arteriole laserâ€induced injury model of thrombosis. Journal of Thrombosis and Haemostasis, 2020, 18, 3078-3085.	3.8	8
7	A coagulation defect arising from heterozygous premature termination of tissue factor. Journal of Clinical Investigation, 2020, 130, 5302-5312.	8.2	17
8	The Secreted Tyrosine Kinase Vlk Is Essential for Normal Platelet Activation and Thrombus Formation. Blood, 2020, 136, 10-11.	1.4	0
9	Protein disulfide isomerase secretion following vascular injury initiates a regulatory pathway for thrombus formation. Nature Communications, 2017, 8, 14151.	12.8	68
10	Gα13 Switch Region 2 Relieves Talin Autoinhibition to Activate αIlbβ3 Integrin. Journal of Biological Chemistry, 2016, 291, 26598-26612.	3.4	12
11	Gα13 Switch Region 2 Relieves Talin Autoinhibition to Activate Platelet αIIbβ3 Integrin. Blood, 2016, 128, 712-712.	1.4	0
12	Platelets are required for enhanced activation of the endothelium and fibrinogen in a mouse thrombosis model of APS. Blood, 2014, 124, 611-622.	1.4	105
13	Real Time In Vivo Imaging of Platelets During Thrombus Formation. , 2013, , 635-649.		4
14	Protein disulfide isomerase capture during thrombus formation in vivo depends on the presence of β3 integrins. Blood, 2012, 120, 647-655.	1.4	117
15	Acyl-Protein Thioesterase 1 Functions in Palmitoylation/Depalmitoylation Cycles of G Proteins and Regulates Platelet Activation. Blood, 2012, 120, 1062-1062.	1.4	0
16	Intravascular but Not Extravascular Tissue Factor Is Required for Fibrin Generation During Thrombus Formation in Cremaster Arterioles in Living Mice Subjected to Laser Injury Blood, 2009, 114, 332-332.	1.4	1
17	P-selectin glycoprotein ligand-1 mediates L-selectin-independent leukocyte rolling in high endothelial venules of peripheral lymph nodes. International Immunology, 2007, 19, 321-329.	4.0	15
18	Platelet PECAM-1 inhibits thrombus formation in vivo. Blood, 2006, 107, 535-541.	1.4	184

2

GLENN MERRILL-SKOLOFF

#	Article	IF	CITATIONS
19	Glycoprotein VI–dependent and –independent pathways of thrombus formation in vivo. Blood, 2006, 107, 3902-3906.	1.4	202
20	Leukocyte-versus microparticle-mediated tissue factor transfer during arteriolar thrombus development. Journal of Leukocyte Biology, 2005, 78, 1318-1326.	3.3	135
21	In Vivo Models of Platelet Function and Thrombosis: Study of Real-Time Thrombus Formation. , 2004, 272, 187-198.		30
22	Initial accumulation of platelets during arterial thrombus formation in vivo is inhibited by elevation of basal cAMP levels. Blood, 2004, 103, 2127-2134.	1.4	74
23	Hematopoietic cell-derived microparticle tissue factor contributes to fibrin formation during thrombus propagation. Blood, 2004, 104, 3190-3197.	1.4	323
24	REVIEW ARTICLE†Thrombus formation: direct real-time observation and digital analysis of thrombus assembly in a living mouse by confocal and widefield intravital microscopy. Journal of Thrombosis and Haemostasis, 2003, 1, 60-68.	3.8	104
25	Accumulation of Tissue Factor into Developing Thrombi In Vivo Is Dependent upon Microparticle P-Selectin Glycoprotein Ligand 1 and Platelet P-Selectin. Journal of Experimental Medicine, 2003, 197, 1585-1598.	8.5	700
26	Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nature Medicine, 2002, 8, 1175-1180.	30.7	625
27	P-Selectin Glycoprotein Ligand 1 (Psgl-1) Is a Physiological Ligand for E-Selectin in Mediating T Helper 1 Lymphocyte Migration. Journal of Experimental Medicine, 2000, 192, 1669-1676.	8.5	143
28	Targeted Gene Disruption Demonstrates That P-Selectin Glycoprotein Ligand 1 (Psgl-1) Is Required for P-Selectin–Mediated but Not E-Selectin–Mediated Neutrophil Rolling and Migration. Journal of Experimental Medicine, 1999, 190, 1769-1782.	8.5	307