
Jonathan M Brotchie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8299859/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neurodegeneration by α-synuclein-specific T cells in AAV-A53T-α-synuclein Parkinson's disease mice. Brain, Behavior, and Immunity, 2022, 101, 194-210.	2.0	34
2	Enhanced firing of locus coeruleus neurons and SK channel dysfunction are conserved in distinct models of prodromal Parkinson's disease. Scientific Reports, 2022, 12, 3180.	1.6	10
3	P2B001 (Extended Release Pramipexole and Rasagiline): A New Treatment Option in Development for Parkinson's Disease. Advances in Therapy, 2022, 39, 1881-1894.	1.3	5
4	Temporal, spatial and molecular pattern of dopaminergic neurodegeneration in the AAV-A53T α-synuclein rat model of Parkinson's disease. Behavioural Brain Research, 2022, 432, 113968.	1.2	5
5	α-Synuclein–induced Kv4 channelopathy in mouse vagal motoneurons drives nonmotor parkinsonian symptoms. Science Advances, 2021, 7, .	4.7	9
6	Early-onset impairment of the ubiquitin-proteasome system in dopaminergic neurons caused by α-synuclein. Acta Neuropathologica Communications, 2020, 8, 17.	2.4	65
7	The Promise and Challenges of Developing miRNA-Based Therapeutics for Parkinson's Disease. Cells, 2020, 9, 841.	1.8	51
8	Repurposing drugs to treat l-DOPA-induced dyskinesia in Parkinson's disease. Neuropharmacology, 2019, 147, 11-27.	2.0	26
9	GM1 Ganglioside Modifies α-Synuclein Toxicity and is Neuroprotective in a Rat α-Synuclein Model of Parkinson's Disease. Scientific Reports, 2019, 9, 8362.	1.6	50
10	Beneficial Effects of Trehalose on Striatal Dopaminergic Deficits in Rodent and Primate Models of Synucleinopathy in Parkinson's Disease. Journal of Pharmacology and Experimental Therapeutics, 2019, 369, 364-374.	1.3	17
11	Pridopidine, a clinicâ€ready compound, reduces 3,4â€dihydroxyphenylalanineâ€induced dyskinesia in Parkinsonian macaques. Movement Disorders, 2019, 34, 708-716.	2.2	32
12	Viewpoint: Developing drugs for levodopaâ€induced dyskinesia in <scp>PD</scp> : Lessons learnt, what does the future hold?. European Journal of Neuroscience, 2019, 49, 399-409.	1.2	11
13	DPI-289, a novel mixed delta opioid agonist / mu opioid antagonist (DAMA), has L-DOPA-sparing potential in Parkinson's disease Neuropharmacology, 2018, 131, 116-127.	2.0	16
14	Pharmacokinetic/Pharmacodynamic Correlation Analysis of Amantadine for Levodopa-Induced Dyskinesia. Journal of Pharmacology and Experimental Therapeutics, 2018, 367, 373-381.	1.3	23
15	AAV1/2-induced overexpression of A53T-α-synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: a new mouse model for Parkinson's disease. Acta Neuropathologica Communications, 2017, 5, 11.	2.4	105
16	Subthalamic nucleus deep brain stimulation is neuroprotective in the A53T αâ€ s ynuclein Parkinson's disease rat model. Annals of Neurology, 2017, 81, 825-836.	2.8	68
17	Reply to "Can STN DBS protect both nigral somata and innervation of the striatum?― Annals of Neurology, 2017, 82, 856-856.	2.8	1
18	Animal models of α-synucleinopathy for Parkinson disease drug development. Nature Reviews Neuroscience, 2017, 18, 515-529.	4.9	166

#	Article	IF	CITATIONS
19	Sirtuin 3 rescues neurons through the stabilisation of mitochondrial biogenetics in the virally-expressing mutant α-synuclein rat model of parkinsonism. Neurobiology of Disease, 2017, 106, 133-146.	2.1	48
20	Dopamine Reuptake Inhibitors in Parkinsons Disease: A Review of Nonhuman Primate Studies and Clinical Trials. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 562-569.	1.3	17
21	α-Synuclein-Based Animal Models of Parkinson's Disease: Challenges and Opportunities in a New Era. Trends in Neurosciences, 2016, 39, 750-762.	4.2	120
22	Tor1a+/- mice develop dystonia-like movements via a striatal dopaminergic dysregulation triggered by peripheral nerve injury. Acta Neuropathologica Communications, 2016, 4, 108.	2.4	27
23	Treatment with Trehalose Prevents Behavioral and Neurochemical Deficits Produced in an AAV α-Synuclein Rat Model of Parkinson's Disease. Molecular Neurobiology, 2016, 53, 2258-2268.	1.9	104
24	Towards a Non-Human Primate Model of Alpha-Synucleinopathy for Development of Therapeutics for Parkinson's Disease: Optimization of AAV1/2 Delivery Parameters to Drive Sustained Expression of Alpha Synuclein and Dopaminergic Degeneration in Macaque. PLoS ONE, 2016, 11, e0167235.	1.1	42
25	Reproducibility of a Parkinsonism-related metabolic brain network in non-human primates: A descriptive pilot study with FDG PET. Movement Disorders, 2015, 30, 1283-1288.	2.2	18
26	Gap junction blockers attenuate beta oscillations and improve forelimb function in hemiparkinsonian rats. Experimental Neurology, 2015, 265, 160-170.	2.0	19
27	Management of impulse control disorders in Parkinson's disease: Controversies and future approaches. Movement Disorders, 2015, 30, 150-159.	2.2	92
28	Pioglitazone may impair <scp>Lâ€DOPA</scp> antiâ€parkinsonian efficacy in the <scp>MPTP</scp> â€lesioned macaque: Results of a pilot study. Synapse, 2015, 69, 99-102.	0.6	9
29	The highly-selective 5-HT1A agonist F15599 reduces l-DOPA-induced dyskinesia without compromising anti-parkinsonian benefits in the MPTP-lesioned macaque. Neuropharmacology, 2015, 97, 306-311.	2.0	39
30	Monoamine Reuptake Inhibitors in Parkinson's Disease. Parkinson's Disease, 2015, 2015, 1-71.	0.6	35
31	L-745,870 reduces the expression of abnormal involuntary movements in the 6-OHDA-lesioned rat. Behavioural Pharmacology, 2015, 26, 101-108.	0.8	24
32	The link between mitochondrial complex I and brain-derived neurotrophic factor in SH-SY5Y cells – The potential of JNX1001 as a therapeutic agent. European Journal of Pharmacology, 2015, 764, 379-384.	1.7	20
33	Primate Models of Complications Related to Parkinson Disease Treatment. , 2015, , 355-371.		0
34	UWA-121, a mixed dopamine and serotonin re-uptake inhibitor, enhances l-DOPA anti-parkinsonian action without worsening dyskinesia or psychosis-like behaviours in the MPTP-lesioned common marmoset. Neuropharmacology, 2014, 82, 76-87.	2.0	40
35	Selective loss of bi-directional synaptic plasticity in the direct and indirect striatal output pathways accompanies generation of parkinsonism and I-DOPA induced dyskinesia in mouse models. Neurobiology of Disease, 2014, 71, 334-344.	2.1	71
36	RGFP109, a histone deacetylase inhibitor attenuates l-DOPA-induced dyskinesia in the MPTP-lesioned marmoset: A proof-of-concept study. Parkinsonism and Related Disorders, 2013, 19, 260-264.	1.1	21

#	Article	IF	CITATIONS
37	The Pharmacology of l-DOPA-Induced Dyskinesia in Parkinson's Disease. Pharmacological Reviews, 2013, 65, 171-222.	7.1	279
38	TC-8831, a nicotinic acetylcholine receptor agonist, reduces l-DOPA-induced dyskinesia in the MPTP macaque. Neuropharmacology, 2013, 73, 337-347.	2.0	38
39	The effects of fast-off-D2 receptor antagonism on L-DOPA-induced dyskinesia and psychosis in parkinsonian macaques. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 43, 151-156.	2.5	11
40	Elevated potassium provides an ionic mechanism for deep brain stimulation in the hemiparkinsonian rat. European Journal of Neuroscience, 2013, 37, 231-241.	1.2	20
41	Novel nondopaminergic targets for motor features of Parkinson's disease: Review of recent trials. Movement Disorders, 2013, 28, 131-144.	2.2	99
42	Rotigotine polyoxazoline conjugate SERâ€214 provides robust and sustained antiparkinsonian benefit. Movement Disorders, 2013, 28, 1675-1682.	2.2	54
43	Selective preservation of MeCP2 in catecholaminergic cells is sufficient to improve the behavioral phenotype of male and female Mecp2-deficient mice. Human Molecular Genetics, 2013, 22, 358-371.	1.4	29
44	Use of catecholâ€ <i>O</i> â€methyltransferase inhibition to minimize Lâ€3,4â€dihydroxyphenylalanineâ€induced dyskinesia in the 1â€methylâ€4â€phenylâ€1,2,3,6â€ŧetrahydropyridineâ€lesioned macaque. European Journal of Neuroscience, 2013, 37, 831-838.	1.2	5
45	Deep brain stimulation of the substantia nigra pars reticulata improves forelimb akinesia in the hemiparkinsonian rat. Journal of Neurophysiology, 2013, 109, 363-374.	0.9	42
46	Alternating Hemiplegia of Childhood-Related Neural and Behavioural Phenotypes in Na+,K+-ATPase α3 Missense Mutant Mice. PLoS ONE, 2013, 8, e60141.	1.1	39
47	L-745,870 Reduces l-DOPA-Induced Dyskinesia in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Lesioned Macaque Model of Parkinson's Disease. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 576-585.	1.3	39
48	A novel MDMA analogue, UWAâ€101, that lacks psychoactivity and cytotoxicity, enhances l â€DOPA benefit in parkinsonian primates. FASEB Journal, 2012, 26, 2154-2163.	0.2	22
49	The Monoamine Re-Uptake Inhibitor UWA-101 Improves Motor Fluctuations in the MPTP-Lesioned Common Marmoset. PLoS ONE, 2012, 7, e45587.	1.1	27
50	l-DOPA pharmacokinetics in the MPTP-lesioned macaque model of Parkinson's disease. Neuropharmacology, 2012, 63, 829-836.	2.0	37
51	5-HT2A receptor levels increase in MPTP-lesioned macaques treated chronically with L-DOPA. Neurobiology of Aging, 2012, 33, 194.e5-194.e15.	1.5	36
52	Regulation of cortical and striatal 5-HT1A receptors in the MPTP-lesioned macaque. Neurobiology of Aging, 2012, 33, 207.e9-207.e19.	1.5	34
53	A proofâ€ofâ€concept, randomized, placeboâ€controlled, multiple crossâ€overs (nâ€ofâ€1) study of naftazone in Parkinson's disease. Fundamental and Clinical Pharmacology, 2012, 26, 557-564.	1.0	27
54	A critique of available scales and presentation of the nonâ€human primate dyskinesia rating scale. Movement Disorders, 2012, 27, 1373-1378.	2.2	62

#	Article	IF	CITATIONS
55	Dihydropyridine calcium channel blockers and the progression of parkinsonism. Annals of Neurology, 2012, 71, 362-369.	2.8	55
56	Increased levels of 5â€HT _{1A} receptor binding in ventral visual pathways in Parkinson's disease. Movement Disorders, 2012, 27, 735-742.	2.2	23
57	Changes in the mRNA Levels of α2A and α2C Adrenergic Receptors in Rat Models of Parkinson's Disease and I-DOPA-Induced Dyskinesia. Journal of Molecular Neuroscience, 2012, 46, 145-152.	1.1	16
58	The serotonergic system in Parkinson's disease. Progress in Neurobiology, 2011, 95, 163-212.	2.8	156
59	Progressive Neurodegeneration or Endogenous Compensation in an Animal Model of Parkinson's Disease Produced by Decreasing Doses of Alpha-Synuclein. PLoS ONE, 2011, 6, e17698.	1.1	82
60	Altered function of glutamatergic cortico-striatal synapses causes output pathway abnormalities in a chronic model of parkinsonism. Neurobiology of Disease, 2011, 41, 591-604.	2.1	31
61	5-HT1A receptor stimulation and L-DOPA-induced dyskinesia in Parkinson's disease: Bridging the gap between serotonergic and glutamatergic mechanisms. Experimental Neurology, 2011, 231, 195-198.	2.0	14
62	Pros and cons of a prion-like pathogenesis in Parkinson's disease. BMC Neurology, 2011, 11, 74.	0.8	13
63	The selective muâ€opioid receptor antagonist adl5510 reduces levodopaâ€induced dyskinesia without affecting antiparkinsonian action in mptpâ€lesioned macaque model of Parkinson's disease. Movement Disorders, 2011, 26, 1225-1233.	2.2	58
64	Generation of a model of l-DOPA-induced dyskinesia in two different mouse strains. Journal of Neuroscience Methods, 2011, 197, 193-208.	1.3	20
65	Anatomically Selective Serotonergic Type 1A and Serotonergic Type 2A Therapies for Parkinson's Disease: An Approach to Reducing Dyskinesia without Exacerbating Parkinsonism?. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 2-8.	1.3	46
66	Characterization of 3,4-Methylenedioxymethamphetamine (MDMA) Enantiomers <i>In Vitro</i> and in the MPTP-Lesioned Primate: <i>R</i> -MDMA Reduces Severity of Dyskinesia, Whereas <i>S</i> -MDMA Extends Duration of ON-Time. Journal of Neuroscience, 2011, 31, 7190-7198.	1.7	71
67	Fatty Acid Amide Hydrolase (FAAH) Inhibition Reduces l-3,4-Dihydroxyphenylalanine-Induced Hyperactivity in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Lesioned Non-Human Primate Model of Parkinson's Disease. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 423-430.	1.3	35
68	New Approaches to Therapy. International Review of Neurobiology, 2011, 98, 123-150.	0.9	31
69	Neuropsychiatric Behaviors in the MPTP Marmoset Model of Parkinson's Disease. Canadian Journal of Neurological Sciences, 2010, 37, 86-95.	0.3	63
70	Physical and crystallographic characterisation of the mGlu5 antagonist MTEP and its monohydrochloride. Journal of Pharmaceutical Sciences, 2010, 99, 234-245.	1.6	4
71	Effect of histamine H ₂ receptor antagonism on levodopa–induced dyskinesia in the MPTPâ€macaque model of Parkinson's disease. Movement Disorders, 2010, 25, 1379-1390.	2.2	46
72	Increased 5â€HT _{2A} receptors in the temporal cortex of parkinsonian patients with visual hallucinations. Movement Disorders, 2010, 25, 1399-1408.	2.2	128

#	Article	IF	CITATIONS
73	The α ₂ adrenergic antagonist fipamezole improves quality of levodopa action in Parkinsonian primates. Movement Disorders, 2010, 25, 2084-2093.	2.2	35
74	Expression of human A53T alpha-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the pathology of Parkinson's disease. Molecular Neurodegeneration, 2010, 5, 43.	4.4	106
75	Synaptic recruitment of AMPA glutamate receptor subunits in levodopaâ€induced dyskinesia in the MPTPâ€lesioned nonhuman primate. Synapse, 2010, 64, 177-180.	0.6	65
76	Functional Anatomy and Pathophysiology of the Basal Ganglia. Blue Books of Neurology, 2010, , 1-13.	0.1	1
77	Reduction of I-DOPA-Induced Dyskinesia by the Selective Metabotropic Glutamate Receptor 5 Antagonist 3-[(2-Methyl-1,3-thiazol-4-yl)ethynyl]pyridine in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Lesioned Macaque Model of Parkinson's Disease. Journal of Pharmacology and Experimental Therapeutics. 2010. 333. 865-873.	1.3	130
78	Antidyskinetic actions of amantadine in Parkinson's disease: are benefits maintained in the long term?. Expert Review of Neurotherapeutics, 2010, 10, 871-873.	1.4	6
79	Redesigning the designer drug ecstasy: non-psychoactive MDMA analogues exhibiting Burkitt's lymphoma cytotoxicity. MedChemComm, 2010, 1, 287.	3.5	11
80	Binding of dopamine and 3-methoxytyramine as l-DOPA metabolites to human α2-adrenergic and dopaminergic receptors. Neuroscience Research, 2010, 67, 245-249.	1.0	27
81	Locomotor response to I-DOPA in reserpine-treated rats following central inhibition of aromatic I-amino acid decarboxylase: Further evidence for non-dopaminergic actions of I-DOPA and its metabolites. Neuroscience Research, 2010, 68, 44-50.	1.0	24
82	The MPTP-lesioned non-human primate models of Parkinson's disease. Past, present, and future. Progress in Brain Research, 2010, 184, 133-157.	0.9	121
83	Mechanisms compensating for dopamine loss in early Parkinson disease. Neurology, 2009, 72, S32-8.	1.5	78
84	α ₁ -Adrenoceptors Mediate Dihydroxyphenylalanine-Induced Activity in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Lesioned Macaques. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 276-283.	1.3	39
85	Dopamine D3 receptor stimulation underlies the development of L-DOPA-induced dyskinesia in animal models of Parkinson's disease. Neurobiology of Disease, 2009, 35, 184-192.	2.1	86
86	Serotonin and Parkinson's disease: On movement, mood, and madness. Movement Disorders, 2009, 24, 1255-1266.	2.2	146
87	New insights into the organization of the basal ganglia. Current Neurology and Neuroscience Reports, 2009, 9, 298-304.	2.0	10
88	Effects of Opioid Antagonists on l-DOPA-Induced Dyskinesia in Parkinson's Disease. , 2009, , 569-580.		1
89	Receptorâ€activity modifying protein 1 expression is increased in the striatum following repeated <scp>L</scp> â€DOPA administration in a 6â€hydroxydopamine lesioned rat model of Parkinson's disease. Synapse, 2008, 62, 310-313.	0.6	8
90	The nociceptin/orphanin FQ (NOP) receptor antagonist Jâ€113397 enhances the effects of levodopa in the MPTPâ€lesioned nonhuman primate model of Parkinson's disease. Movement Disorders, 2008, 23, 1922-1925	2.2	37

#	Article	IF	CITATIONS
91	Striatal histone modifications in models of levodopaâ€induced dyskinesia. Journal of Neurochemistry, 2008, 106, 486-494.	2.1	92
92	Non-dopaminergic treatments in development for Parkinson's disease. Lancet Neurology, The, 2008, 7, 927-938.	4.9	106
93	Parkinson's disease — opportunities for novel therapeutics to reduce the problems of levodopa therapy. Progress in Brain Research, 2008, 172, 479-494.	0.9	40
94	PYM50028, a novel, orally active, nonpeptide neurotrophic factor inducer, prevents and reverses neuronal damage induced by MPP ⁺ in mesencephalic neurons and by MPTP in a mouse model of Parkinson's disease. FASEB Journal, 2008, 22, 2488-2497.	0.2	74
95	Functional interaction between adenosine A2A and group III metabotropic glutamate receptors to reduce parkinsonian symptoms in rats. Neuropharmacology, 2008, 55, 483-490.	2.0	36
96	Dietary resveratrol administration increases MnSOD expression and activity in mouse brain. Biochemical and Biophysical Research Communications, 2008, 372, 254-259.	1.0	110
97	Targeted delivery of an Mecp2 transgene to forebrain neurons improves the behavior of female Mecp2-deficient mice. Human Molecular Genetics, 2008, 17, 1386-1396.	1.4	92
98	Pharmacology of Parkinson's Disease. , 2008, , 37-48.		1
99	Levodopa-induced dyskinesias. Movement Disorders, 2007, 22, 1379-1389.	2.2	422
100	Actions at sites other than D3 receptors mediate the effects of BP897 on I-DOPA-induced hyperactivity in monoamine-depleted rats. Experimental Neurology, 2006, 202, 85-92.	2.0	13
101	α2-Adrenoceptor-mediated modulation of the release of GABA and noradrenaline in the rat substantia nigra pars reticulata. Neuroscience Letters, 2006, 395, 138-142.	1.0	25
102	A role for vanilloid receptor 1 (TRPV1) and endocannabinnoid signalling in the regulation of spontaneous and L-DOPA induced locomotion in normal and reserpine-treated rats. Neuropharmacology, 2006, 51, 557-565.	2.0	74
103	Novel pharmacological targets for the treatment of Parkinson's disease. Nature Reviews Drug Discovery, 2006, 5, 845-854.	21.5	262
104	Histamine H3 receptor agonists reduce L-dopa-induced chorea, but not dystonia, in the MPTP-lesioned nonhuman primate model of Parkinson's disease. Movement Disorders, 2006, 21, 839-846.	2.2	52
105	Translation of nondopaminergic treatments for levodopa-induced dyskinesia from MPTP-lesioned nonhuman primates to phase IIa clinical studies: Keys to success and roads to failure. Movement Disorders, 2006, 21, 1578-1594.	2.2	99
106	Pharmacological characterization of psychosis-like behavior in the MPTP-lesioned nonhuman primate model of Parkinson's disease. Movement Disorders, 2006, 21, 1879-1891.	2.2	97
107	Antiparkinsonian effects of the novel D3/D2 dopamine receptor agonist, S32504, in MPTP-lesioned marmosets: Mediation by D2, not D3, dopamine receptors. Movement Disorders, 2006, 21, 2090-2095.	2.2	10
108	Phenotype of Striatofugal Medium Spiny Neurons in Parkinsonian and Dyskinetic Nonhuman Primates: A Call for a Reappraisal of the Functional Organization of the Basal Ganglia. Journal of Neuroscience, 2006, 26, 8653-8661.	1.7	76

#	Article	IF	CITATIONS
109	Dopamine Receptor Agonists and Levodopa and Inducing Psychosis-Like Behavior in the MPTP Primate Model of Parkinson Disease. Archives of Neurology, 2006, 63, 1343.	4.9	51
110	Drugs in development for Parkinson's disease: an update. Current Opinion in Investigational Drugs, 2006, 7, 25-32.	2.3	15
111	Nondopaminergic mechanisms in levodopa-induced dyskinesia. Movement Disorders, 2005, 20, 919-931.	2.2	195
112	A role for endocannabinoids in the generation of parkinsonism and levodopaâ€induced dyskinesia in MPTPâ€iesioned nonâ€human primate models of Parkinson's disease. FASEB Journal, 2005, 19, 1140-1142.	0.2	189
113	A simple rodent assay for the in vivo identification of agents with potential to reduce levodopa-induced dyskinesia in Parkinson's disease. Experimental Neurology, 2005, 191, 243-250.	2.0	27
114	Differential effects of endocannabinoids on [3H]-GABA uptake in the rat globus pallidus. Experimental Neurology, 2005, 194, 284-287.	2.0	29
115	MPTPâ€Induced Models of Parkinson's Disease in Mice and Nonâ€Human Primates. Current Protocols in Pharmacology, 2005, 29, Unit5.42.	4.0	8
116	Advances in the delivery of treatments for Parkinson's disease. Expert Opinion on Drug Delivery, 2005, 2, 1059-1073.	2.4	32
117	S32504, a Novel Naphtoxazine Agonist at Dopamine D3/D2 Receptors: II. Actions in Rodent, Primate, and Cellular Models of Antiparkinsonian Activity in Comparison to Ropinirole. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 921-935.	1.3	46
118	Levetiracetam Potentiates the Antidyskinetic Action of Amantadine in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-Lesioned Primate Model of Parkinson's Disease. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 386-394.	1.3	74
119	Levetiracetam improves choreic levodopa-induced dyskinesia in the MPTP-treated macaque. European Journal of Pharmacology, 2004, 485, 159-164.	1.7	62
120	Effects of adenosine A1, dopamine D1 and metabotropic glutamate 5 receptors-modulating agents on locomotion of the reserpinised rats. European Journal of Pharmacology, 2004, 497, 187-195.	1.7	11
121	Non-subtype-selective opioid receptor antagonism in treatment of levodopa-induced motor complications in Parkinson's disease. Movement Disorders, 2004, 19, 554-560.	2.2	63
122	Ropinirole versus l-DOPA effects on striatal opioid peptide precursors in a rodent model of Parkinson's disease: implications for dyskinesia. Experimental Neurology, 2004, 185, 36-46.	2.0	68
123	Response to Obeso et al.: Presymptomatic compensation in Parkinson's disease is not dopamine-mediated. Trends in Neurosciences, 2004, 27, 127-128.	4.2	19
124	Levetiracetam Interferes With the l-Dopa Priming Process in MPTP-Lesioned Drug-Naive Marmosets. Clinical Neuropharmacology, 2004, 27, 171-177.	0.2	21
125	Effects of CB1 cannabinoid receptor modulating compounds on the hyperkinesia induced by high-dose levodopa in the reserpine-treated rat model of Parkinson's disease. Movement Disorders, 2003, 18, 138-149.	2.2	75
126	Fipamezole (JP-1730) is a potent ?2 adrenergic receptor antagonist that reduces levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson's disease. Movement Disorders, 2003, 18, 872-883.	2.2	155

#	Article	IF	CITATIONS
127	Novel antiepileptic drug levetiracetam decreases dyskinesia elicited byL-dopa and ropinirole in the MPTP-lesioned marmoset. Movement Disorders, 2003, 18, 1301-1305.	2.2	51
128	Increased striatal pre-proenkephalin B expression is associated with dyskinesia in Parkinson's disease. Experimental Neurology, 2003, 183, 458-468.	2.0	132
129	Presymptomatic compensation in Parkinson's disease is not dopamine-mediated. Trends in Neurosciences, 2003, 26, 215-221.	4.2	309
130	CB cannabinoid receptor signalling in Parkinson's disease. Current Opinion in Pharmacology, 2003, 3, 54-61.	1.7	151
131	Sonic hedgehog is a neuromodulator in the adult subthalamic nucleus. FASEB Journal, 2003, 17, 2337-2338.	0.2	31
132	Cannabinoids Decrease Corticostriatal Synaptic Transmission via an Effect on Glutamate Uptake. Journal of Neuroscience, 2003, 23, 11073-11077.	1.7	89
133	Protection of Striatal Neurons by Joint Blockade of D1 and D2 Receptor Subtypes in an in Vitro Model of Cerebral Hypoxia. Experimental Neurology, 2002, 176, 229-236.	2.0	12
134	Characterisation of striatal NMDA receptors involved in the generation of parkinsonian symptoms: Intrastriatal microinjection studies in the 6-OHDA-lesioned rat. Movement Disorders, 2002, 17, 455-466.	2.2	59
135	Stimulation of cannabinoid receptors reduces levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate model of Parkinson's disease. Movement Disorders, 2002, 17, 1180-1187.	2.2	156
136	Randomised, double-blind, placebo-controlled trial to assess the potential of cannabinoid receptor stimulation in the treatment of dystonia. Movement Disorders, 2002, 17, 145-149.	2.2	114
137	Abnormalities of Striatal Nmda Receptor-Mediated Transmission in Parkinson's Disease. Advances in Behavioral Biology, 2002, , 243-253.	0.2	0
138	μ- and δ-Opioid Receptor Antagonists Reduce Levodopa-Induced Dyskinesia in the MPTP-Lesioned Primate Model of Parkinson's Disease. Experimental Neurology, 2001, 171, 139-146.	2.0	129
139	Upregulation of Striatal Preproenkephalin Gene Expression Occurs before the Appearance of Parkinsonian Signs in 1-Methyl-4-phenyl- 1,2,3,6-tetrahydropyridine Monkeys. Neurobiology of Disease, 2001, 8, 343-350.	2.1	59
140	Neural mechanisms underlying peak-dose dyskinesia induced by levodopa and apomorphine are distinct: Evidence from the effects of the alpha2 adrenoceptor antagonist idazoxan. Movement Disorders, 2001, 16, 642-650.	2.2	81
141	Pathophysiology of levodopa-induced dyskinesia: Potential for new therapies. Nature Reviews Neuroscience, 2001, 2, 577-588.	4.9	472
142	Structures outside the basal ganglia may compensate for dopamine loss in the presymptomatic stages of Parkinson's disease. FASEB Journal, 2001, 15, 1092-1094.	0.2	56
143	Relationship between the Appearance of Symptoms and the Level of Nigrostriatal Degeneration in a Progressive 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Lesioned Macaque Model of Parkinson's Disease. Journal of Neuroscience, 2001, 21, 6853-6861.	1.7	437
144	Structures outside the basal ganglia may compensate for dopamine loss in the presymptomatic stages of Parkinson's disease. FASEB Journal, 2001, 15, 1092-1094.	0.2	3

#	Article	IF	CITATIONS
145	5-HT2C receptor binding is increased in the substantia nigra pars reticulata in Parkinson's disease. Movement Disorders, 2000, 15, 1064-1069.	2.2	62
146	NMDA receptors in the basal ganglia. Journal of Anatomy, 2000, 196, 577-585.	0.9	32
147	5-HT2C receptor antagonists enhance the behavioural response to dopamine D1 receptor agonists in the 6-hydroxydopamine-lesioned rat. European Journal of Pharmacology, 2000, 398, 59-64.	1.7	41
148	Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease. FASEB Journal, 2000, 14, 1432-1438.	0.2	292
149	A Common Signaling Pathway for Striatal NMDA and Adenosine A _{2a} Receptors: Implications for the Treatment of Parkinson's Disease. Journal of Neuroscience, 2000, 20, 7782-7789.	1.7	85
150	The ?2-adrenergic receptor antagonist idazoxan reduces dyskinesia and enhances anti-parkinsonian actions ofL-dopa in the MPTP-lesioned primate model of Parkinson's disease. Movement Disorders, 1999, 14, 744-753.	2.2	145
151	Antiparkinsonian Actions of Blockade of NR2B-Containing NMDA Receptors in the Reserpine-Treated Rat. Experimental Neurology, 1999, 155, 42-48.	2.0	78
152	Effect of Repeatedl-DOPA, Bromocriptine, or Lisuride Administration on Preproenkephalin-A and Preproenkephalin-B mRNA Levels in the Striatum of the 6-Hydroxydopamine-Lesioned Rat. Experimental Neurology, 1999, 155, 204-220.	2.0	150
153	[3H]-2-Deoxyglucose uptake study in mutant dystonic hamsters: Abnormalities in discrete brain regions of the motor system. Movement Disorders, 1998, 13, 718-725.	2.2	34
154	Adjuncts to dopamine replacement: A pragmatic approach to reducing the problem of dyskinesia in Parkinson's disease. Movement Disorders, 1998, 13, 871-876.	2.2	118
155	Topographical Organization of Opioid Peptide Precursor Gene Expression Following Repeated Apomorphine Treatment in the 6-Hydroxydopamine-Lesioned Rat. Experimental Neurology, 1998, 150, 223-234.	2.0	33
156	Behavioral Effects of 5-HT2CReceptor Antagonism in the Substantia Nigra Zona Reticulata of the 6-Hydroxydopamine-Lesioned Rat Model of Parkinson's Disease. Experimental Neurology, 1998, 151, 35-49.	2.0	75
157	Characterization of Enhanced Behavioral Responses tol-DOPA Following Repeated Administration in the 6-Hydroxydopamine-Lesioned Rat Model of Parkinson's Disease. Experimental Neurology, 1998, 151, 334-342.	2.0	180
158	Novel approaches to the symptomatic treatment of parkinsonian syndromes. Current Opinion in Neurology, 1997, 10, 340-345.	1.8	18
159	Enhancement of the Behavioral Response to Apomorphine Administration Following Repeated Treatment in the 6-Hydroxydopamine-Lesioned Rat Is Temporally Correlated with a Rise in Striatal Preproenkephalin-B, but Not Preproenkephalin-A, Gene Expression. Experimental Neurology, 1997, 144, 423-432.	2.0	41
160	Paradoxical action of the cannabinoid WIN 55,212-2 in stimulated and basal cyclic AMP accumulation in rat globus pallidus slices. British Journal of Pharmacology, 1997, 120, 1397-1398.	2.7	102
161	Normethylclozapine potentiates the action of quinpirole in the 6-hydroxydopamine lesioned rat. European Journal of Pharmacology, 1996, 301, 27-30.	1.7	23
162	Activation of the cannabinoid receptor by Δ9-tetrahydrocannabinol reduces γ-aminobutyric acid uptake in the globus pallidus. European Journal of Pharmacology, 1996, 308, 161-164.	1.7	122

#	Article	IF	CITATIONS
163	Modulation of GABA Transmission by Diazoxide and Cromakalim in the Globus Pallidus: Implications for the Treatment of Parkinson's Disease. Experimental Neurology, 1996, 139, 12-16.	2.0	27
164	Potential of Opioid Antagonists in the Treatment of Levodopa-Induced Dyskinesias in Parkinson??s Disease. Drugs and Aging, 1996, 9, 149-158.	1.3	61
165	Modulation of GABAergic transmission in the globus pallidus by the synthetic cannabinoid WIN 55,212-2. , 1996, 22, 382-385.		57
166	Modulation of GABAergic transmission in the globus pallidus by the synthetic cannabinoid WIN 55,212-2. , 1996, 22, 382.		2
167	Speculations on the Molecular Mechanisms Underlying Dopamine Agonist-Induced Dyskinesias in Parkinsonism. Advances in Behavioral Biology, 1996, , 347-355.	0.2	0
168	Modulation of Glutamatergic Transmission in the Striatum by Metabotropic Glutamate Receptors. Advances in Behavioral Biology, 1996, , 173-181.	0.2	0
169	Functional implications of kappa opioid receptor-mediated modulation of glutamate transmission in the output regions of the basal ganglia in rodent and primate models of Parkinson's disease. Brain Research, 1995, 683, 102-108.	1.1	70
170	Metabotropic glutamate receptor agonists inhibit endogenous glutamate release from rat striatal synaptosomes. European Journal of Pharmacology, 1995, 277, 117-121.	1.7	75
171	Modulation of glutamate release by a κ-opioid receptor agonist in rodent and primate striatum. European Journal of Pharmacology, 1995, 281, R1-R2.	1.7	48
172	On the Role of Enkephalin Cotransmission in the GABAergic Striatal Efferents to the Globus Pallidus. Experimental Neurology, 1994, 125, 65-71.	2.0	140
173	Enkephalin-Gaba Co-Transmission in the Striatopallidal Pathway in Parkinsonism. Advances in Behavioral Biology, 1994, , 449-455.	0.2	0
174	Chapter 8 Chemical signalling in the globus pallidus in parkinsonism. Progress in Brain Research, 1993, 99, 125-139.	0.9	19
175	Alleviation of parkinsonism by antagonism of excitatory amino acid transmission in the medial segment of the globus pallidus in rat and primate. Movement Disorders, 1991, 6, 133-138.	2.2	204

176 NMDA receptors in the basal ganglia. , 0, .

1