
Christopher M Waters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8299710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NrnA Is a Linear Dinucleotide Phosphodiesterase with Limited Function in Cyclic Dinucleotide Metabolism in Listeria monocytogenes. Journal of Bacteriology, 2022, 204, JB0020621.	2.2	7
2	Quorum-Sensing Master Regulator VfmE Is a c-di-GMP Effector That Controls Pectate Lyase Production in the Phytopathogen Dickeya dadantii. Microbiology Spectrum, 2022, 10, e0180521.	3.0	2
3	The <i>Vibrio cholerae</i> master regulator for the activation of biofilm biogenesis genes, VpsR, senses both cyclic di-GMP and phosphate. Nucleic Acids Research, 2022, 50, 4484-4499.	14.5	11
4	The 27th Annual Midwest Microbial Pathogenesis Conference in the Age of COVID. Journal of Bacteriology, 2022, , e0013622.	2.2	0
5	Phage defence by deaminase-mediated depletion of deoxynucleotides in bacteria. Nature Microbiology, 2022, 7, 1210-1220.	13.3	46
6	Quorum sensing provides a molecular mechanism for evolution to tune and maintain investment in cooperation. ISME Journal, 2021, 15, 1236-1247.	9.8	18
7	The ever-expanding world of bacterial cyclic oligonucleotide second messengers. Current Opinion in Microbiology, 2021, 60, 96-103.	5.1	36
8	CsrA Enhances Cyclic-di-GMP Biosynthesis and Yersinia pestis Biofilm Blockage of the Flea Foregut by Alleviating Hfq-Dependent Repression of the <i>hmsT</i> mRNA. MBio, 2021, 12, e0135821.	4.1	9
9	Host-emitted amino acid cues regulate bacterial chemokinesis to enhance colonization. Cell Host and Microbe, 2021, 29, 1221-1234.e8.	11.0	21
10	Au naturale: use of biologically derived cyclic di-nucleotides for cancer immunotherapy. Open Biology, 2021, 11, 210277.	3.6	2
11	Tricarboxylic Acid (TCA) Cycle Enzymes and Intermediates Modulate Intracellular Cyclic di-GMP Levels and the Production of Plant Cell Wall–Degrading Enzymes in Soft Rot Pathogen <i>Dickeya dadantii</i> . Molecular Plant-Microbe Interactions, 2020, 33, 296-307.	2.6	9
12	Cyclic di-GMP-Mediated Regulation of Extracellular Mannuronan C-5 Epimerases Is Essential for Cyst Formation in Azotobacter vinelandii. Journal of Bacteriology, 2020, 202, .	2.2	7
13	Increased c-di-GMP Levels Lead to the Production of Alginates of High Molecular Mass in Azotobacter vinelandii. Journal of Bacteriology, 2020, 202, .	2.2	10
14	Surface sensing stimulates cellular differentiation in <i>Caulobacter crescentus</i> . Proceedings of the United States of America, 2020, 117, 17984-17991.	7.1	23
15	VpsR Directly Activates Transcription of Multiple Biofilm Genes in Vibrio cholerae. Journal of Bacteriology, 2020, 202, .	2.2	11
16	One gene, multiple ecological strategies: A biofilm regulator is a capacitor for sustainable diversity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21647-21657.	7.1	18
17	<i>>Vibrio cholerae</i> adapts to sessile and motile lifestyles by cyclic di-GMP regulation of cell shape. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29046-29054.	7.1	21
18	Chemiluminescent sensors for quantitation of the bacterial second messenger cyclic di-GMP. Methods in Enzymology, 2020, 640, 83-104.	1.0	2

#	Article	IF	CITATIONS
19	Cyclic di-GMP Regulation of Gene Expression. , 2020, , 379-394.		4
20	Triclosan depletes the membrane potential in Pseudomonas aeruginosa biofilms inhibiting aminoglycoside induced adaptive resistance. PLoS Pathogens, 2020, 16, e1008529.	4.7	11
21	Title is missing!. , 2020, 16, e1008529.		0
22	Title is missing!. , 2020, 16, e1008529.		0
23	Title is missing!. , 2020, 16, e1008529.		0
24	Title is missing!. , 2020, 16, e1008529.		0
25	The Vc2 Cyclic di-GMP-Dependent Riboswitch of Vibrio cholerae Regulates Expression of an Upstream Putative Small RNA by Controlling RNA Stability. Journal of Bacteriology, 2019, 201, .	2.2	14
26	Cyclic di-GMP Increases Catalase Production and Hydrogen Peroxide Tolerance in <i>Vibrio cholerae</i> . Applied and Environmental Microbiology, 2019, 85, .	3.1	19
27	The ionophore oxyclozanide enhances tobramycin killing of Pseudomonas aeruginosa biofilms by permeabilizing cells and depolarizing the membrane potential. Journal of Antimicrobial Chemotherapy, 2019, 74, 894-906.	3.0	17
28	Under Elevated c-di-GMP in Escherichia coli, YcgR Alters Flagellar Motor Bias and Speed Sequentially, with Additional Negative Control of the Flagellar Regulon via the Adaptor Protein RssB. Journal of Bacteriology, 2019, 202, .	2.2	20
29	Combating Cholera. F1000Research, 2019, 8, 589.	1.6	20
30	Hydrogels Embedded With Melittin and Tobramycin Are Effective Against Pseudomonas aeruginosa Biofilms in an Animal Wound Model. Frontiers in Microbiology, 2019, 10, 1348.	3.5	22
31	Inkjet-Printed Carbon Nanotube Electrodes for Measuring Pyocyanin and Uric Acid in a Wound Fluid Simulant and Culture Media. Analytical Chemistry, 2019, 91, 8835-8844.	6.5	46
32	Vibrio cholerae. Trends in Microbiology, 2019, 27, 806-807.	7.7	23
33	A feedâ€forward signalling circuit controls bacterial virulence through linking cyclic diâ€GMP and two mechanistically distinct sRNAs, ArcZ and RsmB. Environmental Microbiology, 2019, 21, 2755-2771.	3.8	36
34	<i>Pseudomonas aeruginosa</i> in cystic fibrosis: A chronic cheater. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6525-6527.	7.1	30
35	Pyrimidines and Cyclic Trinucleotides Join the Second Messenger Symphony. Cell Host and Microbe, 2019, 25, 471-473.	11.0	5
36	Structural basis of DSF recognition by its receptor RpfR and its regulatory interaction with the DSF synthase RpfF. PLoS Biology, 2019, 17, e3000123.	5.6	23

CHRISTOPHER M WATERS

#	Article	IF	CITATIONS
37	Phosphodiesterase Genes Regulate Amylovoran Production, Biofilm Formation, and Virulence in Erwinia amylovora. Applied and Environmental Microbiology, 2019, 85, .	3.1	22
38	Analyzing Diguanylate Cyclase Activity In Vivo using a Heterologous <i>Escherichia coli</i> Host. Current Protocols in Microbiology, 2019, 52, e74.	6.5	3
39	Triclosan Is an Aminoglycoside Adjuvant for Eradication of Pseudomonas aeruginosa Biofilms. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	41
40	Cyclic di-GMP Positively Regulates DNA Repair in Vibrio cholerae. Journal of Bacteriology, 2018, 200, .	2.2	20
41	The diguanylate cyclase GcpA inhibits the production of pectate lyases via the Hâ€NS protein and RsmB regulatory RNA in <i>Dickeya dadantii</i> . Molecular Plant Pathology, 2018, 19, 1873-1886.	4.2	14
42	Shining the Light on Cyclic di-GMP Dark Matter. Journal of Bacteriology, 2018, 200, .	2.2	2
43	Cyclic di-GMP Regulates TfoY in Vibrio cholerae To Control Motility by both Transcriptional and Posttranscriptional Mechanisms. Journal of Bacteriology, 2018, 200, .	2.2	33
44	A Subset of Exoribonucleases Serve as Degradative Enzymes for pGpG in c-di-GMP Signaling. Journal of Bacteriology, 2018, 200, .	2.2	24
45	Feedback regulation of Caulobacter crescentus holdfast synthesis by flagellum assembly via the holdfast inhibitor HfiA. Molecular Microbiology, 2018, 110, 219-238.	2.5	32
46	Homeostasis of Second Messenger Cyclic-di-AMP Is Critical for Cyanobacterial Fitness and Acclimation to Abiotic Stress. Frontiers in Microbiology, 2018, 9, 1121.	3.5	21
47	VpsR and cyclic di-GMP together drive transcription initiation to activate biofilm formation in Vibrio cholerae. Nucleic Acids Research, 2018, 46, 8876-8887.	14.5	48
48	Maximizing Growth Yield and Dispersal via Quorum Sensing Promotes Cooperation in Vibrio Bacteria. Applied and Environmental Microbiology, 2018, 84, .	3.1	20
49	Direct activation of a phospholipase by cyclic GMP-AMP in El Tor <i>Vibrio cholerae</i> . Proceedings of the United States of America, 2018, 115, E6048-E6055.	7.1	105
50	Enhancing multiplex genome editing by natural transformation (MuGENT) via inactivation of ssDNA exonucleases. Nucleic Acids Research, 2017, 45, 7527-7537.	14.5	33
51	Come to the Light Side : In Vivo Monitoring of Pseudomonas aeruginosa Biofilm Infections in Chronic Wounds in a Diabetic Hairless Murine Model. Journal of Visualized Experiments, 2017, , .	0.3	8
52	Spermine inhibits Vibrio cholerae biofilm formation through the NspS–MbaA polyamine signaling system. Journal of Biological Chemistry, 2017, 292, 17025-17036.	3.4	34
53	Spectrophotometric and Mass Spectroscopic Methods for the Quantification and Kinetic Evaluation of In Vitro c-di-GMP Synthesis. Methods in Molecular Biology, 2017, 1657, 71-84.	0.9	5
54	Cyclic Di-GMP and VpsR Induce the Expression of Type II Secretion in Vibrio cholerae. Journal of Bacteriology, 2017, 199, .	2.2	22

#	Article	IF	CITATIONS
55	The Proline Variant of the W[F/L/M][T/S]R Cyclic Di-GMP Binding Motif Suppresses Dependence on Signal Association for Regulator Function. Journal of Bacteriology, 2017, 199, .	2.2	12
56	The Agrobacterium tumefaciens CheY-like protein ClaR regulates biofilm formation. Microbiology (United Kingdom), 2017, 163, 1680-1691.	1.8	11
57	Regulation of biofilm formation and cellular buoyancy through modulating intracellular cyclic diâ€GMP levels in engineered cyanobacteria. Biotechnology and Bioengineering, 2016, 113, 311-319.	3.3	54
58	Long-Term Evolution of Burkholderia multivorans during a Chronic Cystic Fibrosis Infection Reveals Shifting Forces of Selection. MSystems, 2016, 1, .	3.8	93
59	Polysorbates prevent biofilm formation and pathogenesis of <i>Escherichia coli</i> O104:H4. Biofouling, 2016, 32, 1131-1140.	2.2	20
60	Contextual organismality: Beyond pattern to process in the emergence of organisms. Evolution; International Journal of Organic Evolution, 2016, 70, 2669-2677.	2.3	10
61	Spermidine Inversely Influences Surface Interactions and Planktonic Growth in Agrobacterium tumefaciens. Journal of Bacteriology, 2016, 198, 2682-2691.	2.2	25
62	Bacterial Quorum Sensing Stabilizes Cooperation by Optimizing Growth Strategies. Applied and Environmental Microbiology, 2016, 82, 6498-6506.	3.1	31
63	Cyclic di-AMP Released from Staphylococcus aureus Biofilm Induces a Macrophage Type I Interferon Response. Infection and Immunity, 2016, 84, 3564-3574.	2.2	59
64	Evolution of Ecological Diversity in Biofilms of Pseudomonas aeruginosa by Altered Cyclic Diguanylate Signaling. Journal of Bacteriology, 2016, 198, 2608-2618.	2.2	74
65	In Vivo Synthesis of Cyclic-di-GMP Using a Recombinant Adenovirus Preferentially Improves Adaptive Immune Responses against Extracellular Antigens. Journal of Immunology, 2016, 196, 1741-1752.	0.8	13
66	Crossâ€ŧalk between a regulatory small <scp>RNA</scp> , cyclicâ€diâ€ <scp>GMP</scp> signalling and flagellar regulator <scp>FlhDC</scp> for virulence and bacterial behaviours. Environmental Microbiology, 2015, 17, 4745-4763.	3.8	34
67	Oligoribonuclease is the primary degradative enzyme for pGpG in <i>Pseudomonas aeruginosa</i> that is required for cyclic-di-GMP turnover. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5048-57.	7.1	117
68	A Pterin-Dependent Signaling Pathway Regulates a Dual-Function Diguanylate Cyclase-Phosphodiesterase Controlling Surface Attachment in Agrobacterium tumefaciens. MBio, 2015, 6, e00156.	4.1	48
69	Sharing the sandbox: Evolutionary mechanisms that maintain bacterial cooperation. F1000Research, 2015, 4, 1504.	1.6	34
70	Intracellular Concentrations of Borrelia burgdorferi Cyclic Di-AMP Are Not Changed by Altered Expression of the CdaA Synthase. PLoS ONE, 2015, 10, e0125440.	2.5	22
71	A Filter Binding Assay to Quantify the Association of Cyclic di-GMP to Proteins. Bio-protocol, 2015, 5, .	0.4	2
72	Intestinal GPS: bile and bicarbonate control cyclic di-GMP to provide <i>Vibrio cholerae</i> spatial cues within the small intestine. Gut Microbes, 2014, 5, 775-780.	9.8	16

CHRISTOPHER M WATERS

#	Article	IF	CITATIONS
73	Stimulation of Innate Immunity by <i>In Vivo</i> Cyclic di-GMP Synthesis Using Adenovirus. Vaccine Journal, 2014, 21, 1550-1559.	3.1	12
74	The Vibrio cholerae diguanylate cyclase VCA0965 has an AGDEF active site and synthesizes cyclic di-GMP. BMC Microbiology, 2014, 14, 22.	3.3	40
75	Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development. Biofouling, 2014, 30, 17-28.	2.2	104
76	Bile Acids and Bicarbonate Inversely Regulate Intracellular Cyclic di-GMP in Vibrio cholerae. Infection and Immunity, 2014, 82, 3002-3014.	2.2	72
77	Cyclic diâ€ <scp>GMP</scp> inhibits <i><scp>V</scp>ibrio cholerae</i> motility by repressing induction of transcription and inducing extracellular polysaccharide production. Molecular Microbiology, 2013, 90, 1262-1276.	2.5	119
78	Occurrence of Cyclic di-GMP-Modulating Output Domains in Cyanobacteria: an Illuminating Perspective. MBio, 2013, 4, .	4.1	39
79	STING-Dependent Recognition of Cyclic di-AMP Mediates Type I Interferon Responses during Chlamydia trachomatis Infection. MBio, 2013, 4, e00018-13.	4.1	201
80	Cyclic Di-GMP Modulates the Disease Progression of Erwinia amylovora. Journal of Bacteriology, 2013, 195, 4778-4778.	2.2	0
81	Exploring Environmental Control of Cyclic di-GMP Signaling in Vibrio cholerae by Using the <i>Ex Vivo</i> Lysate Cyclic di-GMP Assay (TELCA). Applied and Environmental Microbiology, 2013, 79, 5233-5241.	3.1	27
82	Cyclic Di-GMP Modulates the Disease Progression of Erwinia amylovora. Journal of Bacteriology, 2013, 195, 2155-2165.	2.2	77
83	Bacterial Wheel Locks: Extracellular Polysaccharide Inhibits Flagellar Rotation. Journal of Bacteriology, 2013, 195, 409-410.	2.2	6
84	Identification of Small Molecules That Antagonize Diguanylate Cyclase Enzymes To Inhibit Biofilm Formation. Antimicrobial Agents and Chemotherapy, 2012, 56, 5202-5211.	3.2	129
85	<scp>H</scp> fqâ€dependent, coâ€ordinate control of cyclic diguanylate synthesis and catabolism in the plague pathogen <i><scp>Y</scp>ersinia pestis</i> . Molecular Microbiology, 2012, 86, 661-674.	2.5	56
86	Quantification of high-specificity cyclic diguanylate signaling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12746-12751.	7.1	136
87	A Tangled Web: Regulatory Connections between Quorum Sensing and Cyclic Di-GMP. Journal of Bacteriology, 2012, 194, 4485-4493.	2.2	130
88	Correlation between In Vivo Biofilm Formation and Virulence Gene Expression in Escherichia coli O104:H4. PLoS ONE, 2012, 7, e41628.	2.5	64
89	The Meteoric Rise of the Signaling Molecule Cyclic di-GMP. Microbe Magazine, 2012, 7, 353-359.	0.4	1
90	Identification of a Novel Benzimidazole That Inhibits Bacterial Biofilm Formation in a Broad-Spectrum Manner. Antimicrobial Agents and Chemotherapy, 2011, 55, 4369-4378.	3.2	92

#	Article	IF	CITATIONS
91	Systematic analysis of cyclic diâ€GMP signalling enzymes and their role in biofilm formation and virulence in <i>Yersinia pestis</i> . Molecular Microbiology, 2011, 79, 533-551.	2.5	152
92	Integration of Cyclic di-GMP and Quorum Sensing in the Control of <i>vpsT</i> and <i>aphA</i> in Vibrio cholerae. Journal of Bacteriology, 2011, 193, 6331-6341.	2.2	139
93	Control of the Type 3 Secretion System in <i>Vibrio harveyi</i> by Quorum Sensing through Repression of ExsA. Applied and Environmental Microbiology, 2010, 76, 4996-5004.	3.1	50
94	Quorum Sensing Controls Biofilm Formation in <i>Vibrio cholerae</i> through Modulation of Cyclic Di-GMP Levels and Repression of <i>vpsT</i> . Journal of Bacteriology, 2008, 190, 2527-2536.	2.2	378
95	The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers. Genes and Development, 2006, 20, 2754-2767.	5.9	204
96	QUORUM SENSING: Cell-to-Cell Communication in Bacteria. Annual Review of Cell and Developmental Biology, 2005, 21, 319-346.	9.4	3,198
97	Methods for Cyclic Di-GMP Detection. , 0, , 68-75.		Ο