Timo Danner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8299626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding Electrolyte Filling of Lithiumâ€lon Battery Electrodes on the Pore Scale Using the Lattice Boltzmann Method. Batteries and Supercaps, 2022, 5, .	4.7	21
2	Elucidating the Role of Microstructure in Thiophosphate Electrolytes – a Combined Experimental and Theoretical Study of <i>β</i> â€Li ₃ PS ₄ . Advanced Science, 2022, 9, e2105234.	11.2	9
3	Effect of a Heterogeneous Distribution of the Conductive Additives and Binder Domain on the Impedances of Lithium-Ion Battery Electrodes. ECS Meeting Abstracts, 2022, MA2022-01, 266-266.	0.0	0
4	On the Additive Microstructure in Composite Cathodes and Alumina-Coated Carbon Microwires for Improved All-Solid-State Batteries. Chemistry of Materials, 2021, 33, 1380-1393.	6.7	38
5	Degradation Effects in Metal–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 2365-2376.	5.1	12
6	Investigating Grain Boundary Contributions in Polycrystalline Solid Electrolytes. ECS Meeting Abstracts, 2021, MA2021-01, 441-441.	0.0	0
7	Investigation of Li Metal Plating and Dissolution on Graphite Electrodes. ECS Meeting Abstracts, 2021, MA2021-01, 294-294.	0.0	0
8	Effect of the 3D Structure and Grain Boundaries on Lithium Transport in Garnet Solid Electrolytes. ACS Applied Energy Materials, 2021, 4, 4786-4804.	5.1	13
9	Investigation of Lithium Transport in 3D Porous Solid-State Li-Ion Electrolytes. ECS Meeting Abstracts, 2021, MA2021-01, 321-321.	0.0	0
10	Modeling of Electronâ€Transfer Kinetics in Magnesium Electrolytes: Influence of the Solvent on the Battery Performance. ChemSusChem, 2021, 14, 4820-4835.	6.8	15
11	Modeling of Electron-Transfer Kinetics in Magnesium Electrolytes: Influence of the Solvent on the Battery Performance. ECS Meeting Abstracts, 2021, MA2021-02, 161-161.	0.0	0
12	Optimizing the Microstructure of Composite Cathodes in Garnet-Based All Solid-State Batteries By Continuum Modeling and Simulation. ECS Meeting Abstracts, 2021, MA2021-02, 305-305.	0.0	0
13	The Role of Secondary Particle Information in Microstructure-Resolved Simulations. ECS Meeting Abstracts, 2021, MA2021-02, 420-420.	0.0	0
14	Beneficial Effects of Three-Dimensional Structured Electrodes for the Fast Charging of Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 13847-13859.	5.1	17
15	Manufacturing Process for Improved Ultraâ€Thick Cathodes in Highâ€Energy Lithiumâ€Ion Batteries. Energy Technology, 2020, 8, 1900167.	3.8	89
16	An Electrochemical Model of Lithium Plating and Stripping in Lithium Ion Batteries. ACS Applied Energy Materials, 2020, 3, 8519-8531.	5.1	48
17	Insights into Self-Discharge of Lithium– and Magnesium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 8457-8474.	5.1	26
18	Modeling of Ion Agglomeration in Magnesium Electrolytes and its Impacts on Battery Performance. ChemSusChem. 2020, 13, 3599-3604.	6.8	15

TIMO DANNER

#	Article	IF	CITATIONS
19	Influence of Conductive Additives and Binder on the Impedance of Lithium-Ion Battery Electrodes: Effect of Morphology. Journal of the Electrochemical Society, 2020, 167, 013546.	2.9	105
20	Influence of the Electrolyte Salt Concentration on the Rate Capability of Ultraâ€Thick NCM 622 Electrodes. Batteries and Supercaps, 2020, 3, 1172-1182.	4.7	25
21	Analysis of Interfacial Effects in All-Solid-State Batteries with Thiophosphate Solid Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 9277-9291.	8.0	73
22	Mechanistic Details of the Spontaneous Intercalation of Li Metal into Graphite Electrodes. Journal of the Electrochemical Society, 2020, 167, 140546.	2.9	12
23	Microstructure―and Theoryâ€Based Modeling andÂSimulation of Batteries and Fuel Cells. Chemie-Ingenieur-Technik, 2019, 91, 758-768.	0.8	4
24	On the influence of nucleation and growth of S8 and Li2S in lithium-sulfur batteries. Electrochimica Acta, 2019, 322, 134719.	5.2	40
25	Analysis of microstructural effects in multi-layer lithium-ion battery cathodes. Materials Characterization, 2019, 151, 166-174.	4.4	16
26	Strategies to Improve Energy and Power Density of Li-Ion Batteries By Virtual Electrode Design. ECS Meeting Abstracts, 2019, MA2019-04, 186-186.	0.0	2
27	Investigating the Grain Boundary Transport and Resulting Effective Bulk Properties for Polycrystalline Solid Electrolytes. ECS Meeting Abstracts, 2019, , .	0.0	0
28	Application and Comparison of Different Structuring Concepts for Ultra-Thick NMC 622 Cathodes in High Energy Lithium Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
29	High Capacity Garnet-Based All-Solid-State Lithium Batteries: Fabrication and 3D-Microstructure Resolved Modeling. ACS Applied Materials & Interfaces, 2018, 10, 22329-22339.	8.0	91
30	First Steps Towards a Continuum Model of Mg-S Batteries. ECS Meeting Abstracts, 2017, , .	0.0	0
31	Insights on the Operation of Metal-Sulfur Batteries: A Modeling Perspective. ECS Meeting Abstracts, 2017, , .	0.0	0
32	Virtual Design of Thick Electrodes for Li-Ion Batteries. ECS Meeting Abstracts, 2017, , .	0.0	0
33	Thick electrodes for Li-ion batteries: A model based analysis. Journal of Power Sources, 2016, 334, 191-201.	7.8	191
34	Characterization of gas diffusion electrodes for metal-air batteries. Journal of Power Sources, 2016, 324, 646-656.	7.8	53
35	Modeling of nano-structured cathodes for improved lithium-sulfur batteries. Electrochimica Acta, 2015, 184, 124-133.	5.2	47
36	Screening and further investigations on promising bi-functional catalysts for metal–air batteries with an aqueous alkaline electrolyte. Journal of Applied Electrochemistry, 2014, 44, 73-85.	2.9	17

TIMO DANNER

#	Article	IF	CITATIONS
37	Reaction and transport in Ag/Ag2O gas diffusion electrodes of aqueous Li–O2 batteries: Experiments and modeling. Journal of Power Sources, 2014, 264, 320-332.	7.8	30
38	Precipitation in aqueous lithium–oxygen batteries: a model-based analysis. Energy and Environmental Science, 2013, 6, 1299.	30.8	63
39	Grand canonical Monte Carlo simulations of vapor-liquid equilibria using a bias potential from an analytic equation of state. Journal of Chemical Physics, 2013, 138, 234106.	3.0	8
40	A Flexible Framework for Modeling Multiple Solid, Liquid and Gaseous Phases in Batteries and Fuel Cells. Journal of the Electrochemical Society, 2012, 159, A1528-A1542.	2.9	78