
Nicolas Poirier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8299314/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Agonist anti-ChemR23 mAb reduces tissue neutrophil accumulation and triggers chronic inflammation resolution. Science Advances, 2021, 7, .	4.7	34
2	Specialized Pro-Resolving Mediators Mitigate Cancer-Related Inflammation: Role of Tumor-Associated Macrophages and Therapeutic Opportunities. Frontiers in Immunology, 2021, 12, 702785.	2.2	25
3	Interleukin-7 receptor blockade by an anti-CD127 monoclonal antibody in nonhuman primate kidney transplantation. American Journal of Transplantation, 2020, 20, 101-111.	2.6	7
4	Selective SIRPÎ \pm blockade reverses tumor T cell exclusion and overcomes cancer immunotherapy resistance. Journal of Clinical Investigation, 2020, 130, 6109-6123.	3.9	53
5	SIRPα/CD47 axis controls the maintenance of transplant tolerance sustained by myeloid-derived suppressor cells. American Journal of Transplantation, 2019, 19, 3263-3275.	2.6	28
6	IL-7 receptor influences anti-TNF responsiveness and T cell gut homing in inflammatory bowel disease. Journal of Clinical Investigation, 2019, 129, 1910-1925.	3.9	85
7	Dynamic human immune and tumour cells cross-talk in PDX-humanised mice warrants checkpoint inhibitor cancer immunotherapies assessment. Gut, 2018, 67, 1753-1754.	6.1	0
8	IL-7 receptor blockade blunts antigen-specific memory T cell responses and chronic inflammation in primates. Nature Communications, 2018, 9, 4483.	5.8	46
9	CD28 blockade controls T cell activation to prevent graft-versus-host disease in primates. Journal of Clinical Investigation, 2018, 128, 3991-4007.	3.9	42
10	Inhibition of effector antigen-specific T cells by intradermal administration of heme oxygenase-1 inducers. Journal of Autoimmunity, 2017, 81, 44-55.	3.0	10
11	Antagonist Anti-CD28 Therapeutics for the Treatment of Autoimmune Disorders. Antibodies, 2017, 6, 19.	1.2	10
12	Clinical efficacy of a new CD28-targeting antagonist of T cell co-stimulation in a non-human primate model of collagen-induced arthritis. Clinical and Experimental Immunology, 2016, 183, 405-418.	1.1	25
13	Anti-CD28 Antibody and Belatacept Exert Differential Effects on Mechanisms of Renal Allograft Rejection. Journal of the American Society of Nephrology: JASN, 2016, 27, 3577-3588.	3.0	57
14	Selective CD28 antagonist prevents Aldara-induced skin inflammation in non-human primates. Experimental Dermatology, 2016, 25, 233-234.	1.4	7
15	First-in-Human Study in Healthy Subjects with FR104, a Pegylated Monoclonal Antibody Fragment Antagonist of CD28. Journal of Immunology, 2016, 197, 4593-4602.	0.4	50
16	Comparative Analysis of piggyBac, CRISPR/Cas9 and TALEN Mediated BAC Transgenesis in the Zygote for the Generation of Humanized SIRPA Rats. Scientific Reports, 2016, 6, 31455.	1.6	29
17	Selective CD28 Antagonist Blunts Memory Immune Responses and Promotes Long-Term Control of Skin Inflammation in Nonhuman Primates. Journal of Immunology, 2016, 196, 274-283.	0.4	24
18	Co-Stimulatory Blockade of the CD28/CD80-86/CTLA-4 Balance in Transplantation: Impact on Memory T Cells?. Frontiers in Immunology, 2015, 6, 411.	2.2	39

NICOLAS POIRIER

#	Article	IF	CITATIONS
19	Selective Blockade of CD28-Mediated T Cell Costimulation Protects Rhesus Monkeys against Acute Fatal Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2015, 194, 1454-1466.	0.4	36
20	FR104, an Antagonist Anti-CD28 Monovalent Fab' Antibody, Prevents Alloimmunization and Allows Calcineurin Inhibitor Minimization in Nonhuman Primate Renal Allograft. American Journal of Transplantation, 2015, 15, 88-100.	2.6	67
21	Advantages ofPapio anubisfor preclinical testing of immunotoxicity of candidate therapeutic antagonist antibodies targeting CD28. MAbs, 2014, 6, 697-706.	2.6	20
22	Antagonist properties of monoclonal antibodies targeting human CD28. MAbs, 2013, 5, 47-55.	2.6	22
23	Control of Transplant Tolerance and Intragraft Regulatory T Cell Localization by Myeloid-Derived Suppressor Cells and CCL5. Journal of Immunology, 2012, 188, 4209-4216.	0.4	74
24	Transplant tolerance is associated with reduced expression of cystathionine-γ-lyase that controls IL-12 production by dendritic cells and TH-1 immune responses. Blood, 2012, 119, 2633-2643.	0.6	20
25	Inducing CTLA-4–Dependent Immune Regulation by Selective CD28 Blockade Promotes Regulatory T Cells in Organ Transplantation. Science Translational Medicine, 2010, 2, 17ra10.	5.8	145
26	Myeloid-Derived Suppressor Cells Accumulate in Kidney Allograft Tolerance and Specifically Suppress Effector T Cell Expansion. Journal of Immunology, 2008, 180, 7898-7906.	0.4	244