
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8299110/publications.pdf Version: 2024-02-01

LUN-BO WANG

#	Article	IF	CITATIONS
1	Environmental changes since 8.4 ka reflected in the lacustrine core sediments from Nam Co, central Tibetan Plateau, China. Holocene, 2008, 18, 831-839.	1.7	124
2	Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM. Scientific Reports, 2015, 5, 13318.	3.3	115
3	Investigation of bathymetry and water quality of Lake Nam Co, the largest lake on the central Tibetan Plateau, China. Limnology, 2009, 10, 149-158.	1.5	108
4	Estimation and trend detection of water storage at Nam Co Lake, central Tibetan Plateau. Journal of Hydrology, 2011, 405, 161-170.	5.4	103
5	Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013. Climatic Change, 2017, 140, 621-633.	3.6	102
6	Indian Ocean Summer Monsoon (IOSM)-dynamics within the past 4Âka recorded in the sediments of Lake Nam Co, central Tibetan Plateau (China). Quaternary Science Reviews, 2012, 39, 73-85.	3.0	99
7	A multi-lake comparative analysis of the General Lake Model (GLM): Stress-testing across a global observatory network. Environmental Modelling and Software, 2018, 102, 274-291.	4.5	93
8	A ~30,000-year record of environmental changes inferred from Lake Chen Co, Southern Tibet. Journal of Paleolimnology, 2009, 42, 343-358.	1.6	77
9	Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7578-7591.	3.3	77
10	Pollen-inferred climate changes and vertical shifts of alpine vegetation belts on the northern slope of the Nyainqentanglha Mountains (central Tibetan Plateau) since 8.4 kyr BP. Holocene, 2011, 21, 939-950.	1.7	61
11	Monsoonal forcing of Holocene paleoenvironmental change on the central Tibetan Plateau inferred using a sediment record from Lake Nam Co (Xizang, China). Journal of Paleolimnology, 2014, 51, 253-266.	1.6	53
12	Mineralogy and geochemistry of the Holocene lacustrine sediments in Nam Co, Tibet. Quaternary International, 2008, 187, 105-116.	1.5	49
13	Pollen-inferred Holocene vegetation and climate histories in Taro Co, southwestern Tibetan Plateau. Science Bulletin, 2014, 59, 4101-4114.	1.7	49
14	Evaluating and Improving the Performance of Three 1â€D Lake Models in a Large Deep Lake of the Central Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3143-3167.	3.3	49
15	Hydrological variations on the Central Tibetan Plateau since the Last Glacial Maximum and their teleconnection to interâ€regional and hemispheric climate variations. Journal of Quaternary Science, 2015, 30, 70-78.	2.1	48
16	Ostracod-based environmental reconstruction over the last 8,400Âyears of Nam Co Lake on the Tibetan plateau. Hydrobiologia, 2010, 648, 157-174.	2.0	43
17	Late glacial and Holocene vegetation and climate variations at Lake Tangra Yumco, central Tibetan Plateau. Global and Planetary Change, 2019, 174, 16-25.	3.5	43
18	Comparisons between the chemical compositions of lake water, inflowing river water, and lake sediment in Nam Co, central Tibetan Plateau, China and their controlling mechanisms. Journal of Great Lakes Research, 2010, 36, 587-595.	1.9	42

#	Article	IF	CITATIONS
19	The Warming of Large Lakes on the Tibetan Plateau: Evidence From a Lake Model Simulation of Nam Co, China, During 1979–2012. Journal of Geophysical Research D: Atmospheres, 2017, 122, 13,095.	3.3	41
20	In-situ water quality investigation of the lakes on the Tibetan Plateau. Science Bulletin, 2021, 66, 1727-1730.	9.0	40
21	Last glacial–Holocene geochronology of sediment cores from a high-altitude Tibetan lake based on AMS 14C dating of plant fossils: Implications for paleoenvironmental reconstructions. Chemical Geology, 2010, 277, 21-29.	3.3	37
22	The spatial distribution and sedimentary processes of organic matter in surface sediments of Nam Co, Central Tibetan Plateau. Science Bulletin, 2012, 57, 4753-4764.	1.7	36
23	Estimation of lakes water storage and their changes on the northwestern Tibetan Plateau based on bathymetric and Landsat data and driving force analyses. Quaternary International, 2017, 454, 56-67.	1.5	36
24	Late quaternary lake level changes of Taro Co and neighbouring lakes, southwestern Tibetan Plateau, based on OSL dating and ostracod analysis. Global and Planetary Change, 2018, 166, 1-18.	3.5	36
25	Climatic and lake environmental changes in the Serling Co region of Tibet over a variety of timescales. Science Bulletin, 2019, 64, 422-424.	9.0	36
26	A comparison of different methods for determining the organic and inorganic carbon content of lake sediment from two lakes on the Tibetan Plateau. Quaternary International, 2012, 250, 49-54.	1.5	35
27	Interplay between redox conditions and hydrological changes in sediments from Lake Nam Co (Tibetan) Tj ETQq1 Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 392, 261-271.	1 0.7843 2.3	14 rgBT /Ov 35
28	Holocene lake level history of the Tangra Yumco lake system, southern-central Tibetan Plateau. Holocene, 2016, 26, 176-187.	1.7	34
29	Spatial variability and correlation of environmental proxies during the past 18,000Âyears among multiple cores from Lake Pumoyum Co, Tibet, China. Journal of Paleolimnology, 2009, 42, 303-315.	1.6	33
30	Estimation of lake water storage and changes based on bathymetric data and altimetry data and the association with climate change in the central Tibetan Plateau. Journal of Hydrology, 2019, 578, 124052.	5.4	32
31	Seasonal stratification of a deep, high-altitude, dimictic lake: Nam Co, Tibetan Plateau. Journal of Hydrology, 2020, 584, 124668.	5.4	32
32	Modern pollen assemblages from surface lake sediments and their environmental implications on the southwestern Tibetan Plateau. Boreas, 2017, 46, 242-253.	2.4	31
33	Spatial and temporal variations in water temperature in a high-altitude deep dimictic mountain lake (Nam Co), central Tibetan Plateau. Journal of Great Lakes Research, 2019, 45, 212-223.	1.9	31
34	The increasing water clarity of Tibetan lakes over last 20Âyears according to MODIS data. Remote Sensing of Environment, 2021, 253, 112199.	11.0	31
35	A New Thermal Categorization of Iceâ€Covered Lakes. Geophysical Research Letters, 2021, 48, e2020CL091374.	4.0	31
36	Water and sediment chemistry of Lake Pumayum Co, South Tibet, China: implications for interpreting sediment carbonate. Journal of Paleolimnology, 2010, 43, 463-474.	1.6	30

#	Article	IF	CITATIONS
37	Independently dated paleomagnetic secular variation records from the Tibetan Plateau. Earth and Planetary Science Letters, 2015, 416, 98-108.	4.4	30
38	Paleo-environmental change since the Late Glacial inferred from lacustrine sediment in Selin Co, central Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516, 101-112.	2.3	30
39	Composition, spatial distribution, and environmental significance of water ions in Pumayum Co catchment, southern Tibet. Journal of Chinese Geography, 2010, 20, 109-120.	3.9	29
40	Mid- to late-Holocene paleoenvironmental changes and glacier fluctuations reconstructed from the sediments of proglacial lake Buruo Co, northern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 517, 74-85.	2.3	28
41	Environmental changes reflected by n-alkanes of lake core in Nam Co on the Tibetan Plateau since 8.4 kaB.P Science Bulletin, 2008, 53, 3051-3057.	9.0	27
42	Artemisia/Chenopodiaceae ratio from surface lake sediments on the central and western Tibetan Plateau and its application. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 479, 138-145.	2.3	27
43	Spatial distribution and ecology of the Recent Ostracoda from Tangra Yumco and adjacent waters on the southern Tibetan Plateau: A key to palaeoenvironmental reconstruction. Limnologica, 2016, 59, 21-43.	1.5	26
44	Late Holocene vegetation responses to climate change and human impact on the central Tibetan Plateau. Science of the Total Environment, 2020, 708, 135370.	8.0	26
45	Spatial variability and the controlling mechanisms of surface sediments from Nam Co, central Tibetan Plateau, China. Sedimentary Geology, 2015, 319, 69-77.	2.1	25
46	Highâ€resolution paleomagnetic and sedimentological investigations on the Tibetan Plateau for the past 16 ka cal B.P.—The Tangra Yumco record. Geochemistry, Geophysics, Geosystems, 2016, 17, 774-790.	2.5	22
47	Variability of the 14 C reservoir effects in Lake Tangra Yumco, Central Tibet (China), determined from recent sedimentation rates and dating of plant fossils. Quaternary International, 2017, 430, 3-11.	1.5	22
48	Diatom metabarcoding and microscopic analyses from sediment samples at Lake Nam Co, Tibet: The effect of sample-size and bioinformatics on the identified communities. Ecological Indicators, 2021, 121, 107070.	6.3	22
49	Precipitation dynamics on the Tibetan Plateau during the Late Quaternary – Hydroclimatic sedimentary proxies versus lake level variability. Global and Planetary Change, 2021, 205, 103594.	3.5	21
50	Holocene lake level fluctuations and environmental changes at Taro Co, southwestern Tibet, based on ostracod-inferred water depth reconstruction. Holocene, 2016, 26, 29-43.	1.7	20
51	Synchronous pattern of moisture availability on the southern Tibetan Plateau since 17.5Âcal. ka <scp>BP</scp> – the Tangra Yumco lake sediment record. Boreas, 2017, 46, 229-241.	2.4	20
52	Sediment dynamics and hydrologic events affecting small lacustrine systems on the southern-central Tibetan Plateau – the example of TT Lake. Holocene, 2015, 25, 508-522.	1.7	19
53	Monitoring changes of snow cover, lake and vegetation phenology in Nam Co Lake Basin (Tibetan) Tj ETQq1 .	1 0.784314 i 1.9	rgBT_/Overloc
54	Vertical variation of bacterial community in Nam Co, a large stratified lake in central Tibetan Plateau. Antonie Van Leeuwenhoek, 2016, 109, 1323-1335.	1.7	17

#	Article	IF	CITATIONS
55	Mid- to late-Holocene paleoenvironmental changes inferred from organic geochemical proxies in Lake Tangra Yumco, Central Tibetan Plateau. Holocene, 2017, 27, 1475-1486.	1.7	16
56	Mechanism of variations in environmental magnetic proxies of lake sediments from Nam Co, Tibet during the Holocene. Science Bulletin, 2013, 58, 1568-1578.	1.7	15
57	Ostracoda (Crustacea) as indicators of subaqueous mass movements: An example from the large brackish lake Tangra Yumco on the southern Tibetan Plateau, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 419, 60-74.	2.3	15
58	Ostracod assemblages and their environmental significance from the lake core of the Nam Co on the Tibetan Plateau 8.4 kaBP. Journal of Chinese Geography, 2009, 19, 387-402.	3.9	14
59	Further discussion about the features of Lake Puma Yum Co, South Tibet, China. Limnology, 2010, 11, 281-287.	1.5	14
60	Spatial distribution of n-alkanes in surface sediments of Selin Co Lake, central Tibetan Plateau, China. Journal of Paleolimnology, 2021, 65, 53-67.	1.6	13
61	Paleoclimate changes over the past 13,000Âyears recorded by Chibuzhang Co sediments in the source region of the Yangtze River, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 573, 110433.	2.3	13
62	Black carbon and mercury in the surface sediments of Selin Co, central Tibetan Plateau: Covariation with total carbon. Science of the Total Environment, 2020, 721, 137752.	8.0	12
63	Characteristics and seasonal variations in the hydrochemistry of the Tangra Yumco basin, central Tibetan Plateau, and responses to the Indian summer monsoon. Environmental Earth Sciences, 2017, 76, 1.	2.7	11
64	Temporal variability of 14C reservoir effects and sedimentological chronology analysis in lake sediments from Chibuzhang Co, North Tibet (China). Quaternary Geochronology, 2019, 52, 88-102.	1.4	11
65	Distribution, potential sources, and response to water depth of archaeal tetraethers in Tibetan Plateau lake sediments. Chemical Geology, 2022, 601, 120825.	3.3	11
66	Multiple implications of rare earth elements for Holocene environmental changes in Nam Co, Tibet. Quaternary International, 2011, 236, 96-106.	1.5	10
67	Influence of salinity on glycerol dialkyl glycerol tetraether-based indicators in Tibetan Plateau lakes: Implications for paleotemperature and paleosalinity reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 601, 111127.	2.3	10
68	Limnological features of glacier-fed rivers in the Southern Tibetan Plateau, China. Limnology, 2012, 13, 301-307.	1.5	9
69	Moisture and vegetation variations in the extremely cold-dry area of the Tibetan Plateau during the past 5000Âyears. Catena, 2021, 204, 105381.	5.0	9
70	Hydrochemistry of Rara Lake: A Ramsar lake from the southern slope of the central Himalayas, Nepal. Journal of Mountain Science, 2021, 18, 141-158.	2.0	9
71	Distribution and formation of monohydrocalcite from surface sediments in NamÂCo Lake, Tibet. Quaternary International, 2012, 263, 85-92.	1.5	8
72	Spatial distribution of diatom assemblages in the surface sediments of Selin Co, central Tibetan Plateau, China, and the controlling factors. Journal of Great Lakes Research, 2019, 45, 1069-1079.	1.9	8

#	Article	IF	CITATIONS
73	Compatibility of Diatom Valve Records With Sedimentary Ancient DNA Amplicon Data: A Case Study in a Brackish, Alkaline Tibetan Lake. Frontiers in Earth Science, 2022, 10, .	1.8	8
74	Origin of modern dolomite in surface lake sediments on the central and western Tibetan Plateau. Quaternary International, 2020, 544, 65-75.	1.5	7
75	Comparison of surface water chemistry and weathering effects of two lake basins in the Changtang Nature Reserve, China. Journal of Environmental Sciences, 2016, 41, 183-194.	6.1	6
76	Spatio-temporal variations of hydrochemistry and modern sedimentation processes in the Nam Co basin, Tibetan Plateau: Implications for carbonate precipitation. Journal of Great Lakes Research, 2020, 46, 961-975.	1.9	6
77	Holocene paleoenvironmental change inferred from two sediment cores collected in the Tibetan lake Taro Co. Journal of Paleolimnology, 2021, 66, 171-186.	1.6	6
78	Highâ€throughput identification of nonâ€marine Ostracoda from the Tibetan Plateau: Evaluating the success of various primers on sedimentary DNA samples. Environmental DNA, 2021, 3, 982-996.	5.8	5
79	Is there a common threshold to subfossil chironomid assemblages at 16 m water depth? Evidence from the Tibetan Plateau. Journal of Limnology, 2020, 79, .	1.1	5
80	Sources and behavior of monsoon air masses in the lowest-latitude region on the Tibetan Plateau, and their paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 554, 109750.	2.3	2
81	<p>Three new needle-shaped Fragilaria species from Central America and the Tibetan Plateau</p> . Phytotaxa, 2021, 479, 1-22.	0.3	2
82	ICDP workshop on scientific drilling of Nam Co on the Tibetan Plateau: 1Âmillion years of paleoenvironmental history, geomicrobiology, tectonics and paleomagnetism derived from sediments of a high-altitude lake. Scientific Drilling, 0, 25, 63-70.	0.6	2
83	Mio–Pleistocene Ostracoda from the Zhada Basin (western Tibetan Plateau). Palaontologische Zeitschrift, 2021, 95, 37-54.	1.6	1