
Georgii A Bazykin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8298544/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature, 2013, 500, 453-457.	13.7	352
2	Prevalence of Epistasis in the Evolution of Influenza A Surface Proteins. PLoS Genetics, 2011, 7, e1001301.	1.5	182
3	APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication. Genome Research, 2016, 26, 174-182.	2.4	156
4	Alternative translation start sites are conserved in eukaryotic genomes. Nucleic Acids Research, 2011, 39, 567-577.	6.5	133
5	Fast Evolution from Precast Bricks: Genomics of Young Freshwater Populations of Threespine Stickleback Gasterosteus aculeatus. PLoS Genetics, 2014, 10, e1004696.	1.5	119
6	Negative selection in humans and fruit flies involves synergistic epistasis. Science, 2017, 356, 539-542.	6.0	103
7	Positive selection at sites of multiple amino acid replacements since rat–mouse divergence. Nature, 2004, 429, 558-562.	13.7	70
8	Young proteins experience more variable selection pressures than old proteins. Genome Research, 2010, 20, 1574-1581.	2.4	69
9	Genomic epidemiology of the early stages of the SARS-CoV-2 outbreak in Russia. Nature Communications, 2021, 12, 649.	5.8	63
10	Coordinated Evolution of Influenza A Surface Proteins. PLoS Genetics, 2015, 11, e1005404.	1.5	58
11	Transcriptomeâ€based phylogeny of endemic Lake Baikal amphipod species flock: fast speciation accompanied by frequent episodes of positive selection. Molecular Ecology, 2017, 26, 536-553.	2.0	55
12	Intrasubtype Reassortments Cause Adaptive Amino Acid Replacements in H3N2 Influenza Genes. PLoS Genetics, 2014, 10, e1004037.	1.5	43
13	Extraordinary Genetic Diversity in a Wood Decay Mushroom. Molecular Biology and Evolution, 2015, 32, 2775-2783.	3.5	42
14	Human mismatch repair system balances mutation rates between strands by removing more mismatches from the lagging strand. Genome Research, 2017, 27, 1336-1343.	2.4	37
15	Heterogeneity of the Transition/Transversion Ratio in Drosophila and Hominidae Genomes. Molecular Biology and Evolution, 2012, 29, 1943-1955.	3.5	36
16	Slightly deleterious genomic variants and transcriptome perturbations in Down syndrome embryonic selection. Genome Research, 2018, 28, 1-10.	2.4	36
17	Gene Age Predicts the Strength of Purifying Selection Acting on Gene Expression Variation in Humans. American Journal of Human Genetics, 2014, 95, 660-674.	2.6	35
18	Changing preferences: deformation of single position amino acid fitness landscapes and evolution of proteins. Biology Letters, 2015, 11, .	1.0	33

GEORGII A BAZYKIN

#	Article	IF	CITATIONS
19	Extensive parallelism in protein evolution. Biology Direct, 2007, 2, 20.	1.9	32
20	Genomic signatures of recombination in a natural population of the bdelloid rotifer Adineta vaga. Nature Communications, 2020, 11, 6421.	5.8	31
21	Evolution of Prokaryotic Genes by Shift of Stop Codons. Journal of Molecular Evolution, 2011, 72, 138-146.	0.8	29
22	Bursts of nonsynonymous substitutions in HIV-1 evolution reveal instances of positive selection at conservative protein sites. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19396-19401.	3.3	28
23	Prevalence of Multinucleotide Replacements in Evolution of Primates and Drosophila. Molecular Biology and Evolution, 2013, 30, 1315-1325.	3.5	28
24	Error-prone bypass of DNA lesions during lagging-strand replication is a common source of germline and cancer mutations. Nature Genetics, 2019, 51, 36-41.	9.4	28
25	Fitness conferred by replaced amino acids declines with time. Biology Letters, 2012, 8, 825-828.	1.0	27
26	Evolution of local mutation rate and its determinants. Molecular Biology and Evolution, 2017, 34, msx060.	3.5	27
27	Strong Mutational Bias Toward Deletions in the Drosophila melanogaster Genome Is Compensated by Selection. Genome Biology and Evolution, 2013, 5, 514-524.	1.1	26
28	Natural Selection for Nucleotide Usage at Synonymous and Nonsynonymous Sites in Influenza A Virus Genes. Journal of Virology, 2008, 82, 4938-4945.	1.5	25
29	APOBEC3A/B-induced mutagenesis is responsible for 20% of heritable mutations in the TpCpW context. Genome Research, 2017, 27, 175-184.	2.4	24
30	The rise and spread of the SARS-CoV-2 AY.122 lineage in Russia. Virus Evolution, 2022, 8, veac017.	2.2	24
31	Parallel Evolution of Metazoan Mitochondrial Proteins. Genome Biology and Evolution, 2017, 9, 1341-1350.	1.1	23
32	Architecture of Parallel Adaptation in Ten Lacustrine Threespine Stickleback Populations from the White Sea Area. Genome Biology and Evolution, 2019, 11, 2605-2618.	1.1	23
33	Directionality in the evolution of influenza A haemagglutinin. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2455-2464.	1.2	21
34	Insertions and deletions trigger adaptive walks in <i>Drosophila</i> proteins. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3075-3082.	1.2	20
35	Major role of positive selection in the evolution of conservative segments of <i>Drosophila</i> proteins. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3409-3417.	1.2	19
36	Functional implications of splicing polymorphisms in the human genome. Human Molecular Genetics, 2013, 22, 3449-3459.	1.4	19

GEORGII A BAZYKIN

#	Article	IF	CITATIONS
37	Polymerase ζ Activity Is Linked to Replication Timing in Humans: Evidence from Mutational Signatures. Molecular Biology and Evolution, 2015, 32, msv184.	3.5	19
38	Matching population diversity of rhizobial <i>nod</i> A and legume <i>NFR5</i> genes in plant–microbe symbiosis. Ecology and Evolution, 2019, 9, 10377-10386.	0.8	15
39	SHORT INDELS ARE SUBJECT TO INSERTION-BIASED GENE CONVERSION. Evolution; International Journal of Organic Evolution, 2013, 67, 2604-2613.	1.1	14
40	Weak Negative and Positive Selection and the Drift Load at Splice Sites. Genome Biology and Evolution, 2014, 6, 1437-1447.	1.1	14
41	A new species of Cyanea jellyfish sympatric to C. capillata in the White Sea. Polar Biology, 2015, 38, 1439-1451.	O.5	14
42	Adaptive evolution at mRNA editing sites in soft-bodied cephalopods. PeerJ, 2020, 8, e10456.	0.9	13
43	Detecting Past Positive Selection through Ongoing Negative Selection. Genome Biology and Evolution, 2011, 3, 1006-1013.	1.1	12
44	Fitness Consequences of Advanced Ancestral Age over Three Generations in Humans. PLoS ONE, 2015, 10, e0128197.	1.1	11
45	Allele-specific nonstationarity in evolution of influenza A virus surface proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21104-21112.	3.3	10
46	Rapid Accumulation of Mutations in Growing Mycelia of a Hypervariable Fungus Schizophyllum commune. Molecular Biology and Evolution, 2020, 37, 2279-2286.	3.5	10
47	COMPARATIVE GENOMICS OF TRANSCRIPTIONAL REGULATION IN YEASTS AND ITS APPLICATION TO IDENTIFICATION OF A CANDIDATE ALPHA-ISOPROPYLMALATE TRANSPORTER. Journal of Bioinformatics and Computational Biology, 2006, 04, 981-998.	0.3	8
48	Genome-Level Analysis of Selective Constraint without Apparent Sequence Conservation. Genome Biology and Evolution, 2013, 5, 532-541.	1.1	8
49	Correlated Evolution of Nucleotide Positions within Splice Sites in Mammals. PLoS ONE, 2015, 10, e0144388.	1.1	8
50	Females Delay Dispersal and Breeding in a Solitary Gerbil, Meriones tamariscinus. Journal of Mammalogy, 2004, 85, 105-112.	0.6	7
51	Rate of promoter class turn-over in yeast evolution. BMC Evolutionary Biology, 2006, 6, 14.	3.2	7
52	Substitutions into amino acids that are pathogenic in human mitochondrial proteins are more frequent in lineages closely related to human than in distant lineages. PeerJ, 2017, 5, e4143.	0.9	7
53	Pairs of Mutually Compensatory Frameshifting Mutations Contribute to Protein Evolution. Molecular Biology and Evolution, 2022, 39, .	3.5	7
54	Polymorphism Due to Multiple Amino Acid Substitutions at a Codon Site Within <i>Ciona savignyi</i> . Genetics, 2009, 181, 685-690.	1.2	6

GEORGII A BAZYKIN

#	Article	IF	CITATIONS
55	Complex Selection on Human Polyadenylation Signals Revealed by Polymorphism and Divergence Data. Genome Biology and Evolution, 2016, 8, 1971-1979.	1.1	6
56	Episodic evolution of coadapted sets of amino acid sites in mitochondrial proteins. PLoS Genetics, 2021, 17, e1008711.	1.5	6
57	A broad comparative genomics approach to understanding the pathogenicity of Complex I mutations. Scientific Reports, 2021, 11, 19578.	1.6	5
58	Complex fitness landscape shapes variation in a hyperpolymorphic species. ELife, 2022, 11, .	2.8	5
59	Senescence and entrenchment in evolution of amino acid sites. Nature Communications, 2020, 11, 4603.	5.8	4
60	Convergent Adaptation in Mitochondria of Phylogenetically Distant Birds: Does it Exist?. Genome Biology and Evolution, 2021, 13, .	1.1	4
61	Sergey Ivanovitch Ognev and the formation of theriology in Russia. Mammalia, 2012, 76, .	0.3	3
62	Are Nonsense Alleles of Drosophila melanogaster Genes under Any Selection?. Genome Biology and Evolution, 2018, 10, 1012-1018.	1.1	3
63	SELVa: Simulator of evolution with landscape variation. PLoS ONE, 2020, 15, e0242225.	1.1	3
64	Accurate fetal variant calling in the presence of maternal cell contamination. European Journal of Human Genetics, 2020, 28, 1615-1623.	1.4	2
65	Molecular Epidemiology of HIV-1 in Oryol Oblast, Russia. Virus Evolution, 0, , .	2.2	2
66	Compensatory Evolution of Intrinsic Transcription Terminators in Bacillus Cereus. Genome Biology and Evolution, 2017, 9, 340-349.	1.1	1
67	Genetics of Adaptation of the Ascomycetous Fungus Podospora anserina to Submerged Cultivation. Genome Biology and Evolution, 2019, 11, 2807-2817.	1.1	1
68	Bursts of amino acid replacements in protein evolution. Royal Society Open Science, 2019, 6, 181095.	1.1	1
69	Excessive Parallelism in Protein Evolution of Lake Baikal Amphipod Species Flock. Genome Biology and Evolution, 2020, 12, 1493-1503.	1.1	1
70	Prevalence of loss-of-function alleles does not correlate with lifetime fecundity and other life-history traits in metazoans. Biology Direct, 2018, 13, 4.	1.9	0
71	The limits of normal approximation for adult height. European Journal of Human Genetics, 2021, 29, 1082-1091.	1.4	0
72	Phylogenetic inference of changes in amino acid propensities with single-position resolution. PLoS Computational Biology, 2022, 18, e1009878.	1.5	0