Sandra Iden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8298405/publications.pdf

Version: 2024-02-01

393982 552369 1,928 31 19 26 citations h-index g-index papers 39 39 39 3057 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Crosstalk between small GTPases and polarity proteins in cell polarization. Nature Reviews Molecular Cell Biology, 2008, 9, 846-859.	16.1	404
2	The Monocarboxylate Transporter 8 Linked to Human Psychomotor Retardation Is Highly Expressed in Thyroid Hormone-Sensitive Neuron Populations. Endocrinology, 2005, 146, 1701-1706.	1.4	230
3	A Mutation in the 5′-UTR of IFITM5 Creates an In-Frame Start Codon and Causes Autosomal-Dominant Osteogenesis Imperfecta Type V with Hyperplastic Callus. American Journal of Human Genetics, 2012, 91, 349-357.	2.6	205
4	Granzyme B is expressed in mouse mast cells in vivo and in vitro and causes delayed cell death independent of perforin. Cell Death and Differentiation, 2007, 14, 1768-1779.	5.0	118
5	Tumor Type-Dependent Function of the Par3 Polarity Protein in Skin Tumorigenesis. Cancer Cell, 2012, 22, 389-403.	7.7	107
6	Cell polarity proteins and cancer. Seminars in Cancer Biology, 2012, 22, 208-215.	4.3	98
7	aPKC phosphorylates JAM-A at Ser285 to promote cell contact maturation and tight junction formation. Journal of Cell Biology, 2012, 196, 623-639.	2.3	92
8	A distinct PAR complex associates physically with VEâ€cadherin in vertebrate endothelial cells. EMBO Reports, 2006, 7, 1239-1246.	2.0	84
9	JAM-C Regulates Tight Junctions and Integrin-mediated Cell Adhesion and Migration. Journal of Biological Chemistry, 2007, 282, 1830-1837.	1.6	78
10	Junctional adhesion molecule-A participates in the formation of apico-basal polarity through different domains. Experimental Cell Research, 2006, 312, 3389-3403.	1.2	75
11	mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation. Nature Communications, 2016, 7, 13226.	5.8	72
12	JAM-A regulates cortical dynein localization through Cdc42 to control planar spindle orientation during mitosis. Nature Communications, 2015, 6, 8128.	5.8	44
13	The epidermal polarity protein Par3 is a non–cell autonomous suppressor of malignant melanoma. Journal of Experimental Medicine, 2017, 214, 339-358.	4.2	37
14	Essential Role of Polarity Protein Par3 for Epidermal Homeostasis through Regulation of Barrier Function, Keratinocyte Differentiation, and Stem Cell Maintenance. Journal of Investigative Dermatology, 2016, 136, 2406-2416.	0.3	36
15	Polarity signaling ensures epidermal homeostasis by coupling cellular mechanics and genomic integrity. Nature Communications, 2019, 10, 3362.	5.8	30
16	The in vivo function of mammalian cell and tissue polarity regulators – how to shape and maintain the epidermal barrier. Journal of Cell Science, 2012, 125, 3501-10.	1.2	29
17	Epithelial Barriers in Murine Skin during Herpes Simplex Virus 1 Infection: The Role of Tight Junction Formation. Journal of Investigative Dermatology, 2017, 137, 884-893.	0.3	24
18	Impact of the Prolymphangiogenic Crosstalk in the Tumor Microenvironment on Lymphatic Cancer Metastasis. BioMed Research International, 2014, 2014, 1-14.	0.9	22

#	Article	IF	Citations
19	A Novel Model of Metastatic Conjunctival Melanoma in Immune-Competent Mice., 2015, 56, 5965.		21
20	The Rac activator Tiam1 is required for polarized protrusional outgrowth of primary astrocytes by affecting the organization of the microtubule network. Small GTPases, 2012, 3, 4-14.	0.7	20
21	Regulation of epithelial and endothelial junctions by PAR proteins. Frontiers in Bioscience - Landmark, 2008, Volume, 6520.	3.0	19
22	Shared and independent functions of aPKCl̂» and Par3 in skin tumorigenesis. Oncogene, 2018, 37, 5136-5146.	2.6	18
23	Comparing the Hem- and Lymphangiogenic Profile of Conjunctival and Uveal Melanoma Cell Lines. , 2015, 56, 5691.		16
24	Mechanisms of melanocyte polarity and differentiation: What can we learn from other neuroectoderm-derived lineages?. Current Opinion in Cell Biology, 2020, 67, 99-108.	2.6	14
25	T cell stiffness is enhanced upon formation of immunological synapse. ELife, 2021, 10, .	2.8	9
26	Scaffold polarity proteins Par3A and Par3B share redundant functions while Par3B acts independent of atypical protein kinase C/Par6 in podocytes to maintain the kidney filtration barrier. Kidney International, 2022, 101, 733-751.	2.6	7
27	Orchestration of tissueâ€scale mechanics and fate decisions by polarity signalling. EMBO Journal, 2021, 40, e106787.	3.5	5
28	Par Proteins in Tumor Formation and Progression. , 2015, , 145-165.		2
29	Lrig 1 - and Wnt-dependent niches dictate segregation of resident immune cells and melanocytes in murine tail epidermis. Development (Cambridge), 2022, 149, .	1.2	1
30	Emerging Laminin-332â€'Dependent and â€'Independent Roles for Integrin α3 in Protumorigenic Signaling. Journal of Investigative Dermatology, 2021, 141, 713-716.	0.3	0
31	Characterization of the Elasticity of CD4+ T Cells: An Approach Based on Peak Force Quantitative Nanomechanical Mapping. Bio-protocol, 2022, 12, .	0.2	0