Ardashir Mohammadzadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/82983/publications.pdf

Version: 2024-02-01

185998 276539 87 2,212 28 41 g-index citations h-index papers 89 89 89 1234 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An Interval Type-3 Fuzzy System and a New Online Fractional-Order Learning Algorithm: Theory and Practice. IEEE Transactions on Fuzzy Systems, 2020, 28, 1940-1950.	6.5	110
2	Synchronization of uncertain fractional-order hyperchaotic systems by using a new self-evolving non-singleton type-2 fuzzy neural network and its application to secure communication. Nonlinear Dynamics, 2017, 88, 1-19.	2.7	101
3	A New Online Learned Interval Type-3 Fuzzy Control System for Solar Energy Management Systems. IEEE Access, 2021, 9, 10498-10508.	2.6	91
4	Fixed-time synchronization analysis for discontinuous fuzzy inertial neural networks with parameter uncertainties. Neurocomputing, 2021, 422, 295-313.	3.5	75
5	A Novel Fractional-Order Multiple-Model Type-3 Fuzzy Control for Nonlinear Systems with Unmodeled Dynamics. International Journal of Fuzzy Systems, 2021, 23, 1633-1651.	2.3	70
6	Deep learned recurrent type-3 fuzzy system: Application for renewable energy modeling/prediction. Energy Reports, 2021, 7, 8115-8127.	2.5	70
7	A type-3 logic fuzzy system: Optimized by a correntropy based Kalman filter with adaptive fuzzy kernel size. Information Sciences, 2021, 572, 424-443.	4.0	61
8	A novel general type-2 fuzzy controller for fractional-order multi-agent systems under unknown time-varying topology. Journal of the Franklin Institute, 2019, 356, 5151-5171.	1.9	57
9	Physicochemical parameters data assimilation for efficient improvement of water quality index prediction: Comparative assessment of a noise suppression hybridization approach. Journal of Cleaner Production, 2020, 271, 122576.	4.6	56
10	A new fractional-order general type-2 fuzzy predictive control system and its application for glucose level regulation. Applied Soft Computing Journal, 2020, 91, 106241.	4.1	53
11	A novel fractional-order type-2 fuzzy control method for online frequency regulation in ac microgrid. Engineering Applications of Artificial Intelligence, 2020, 90, 103483.	4.3	51
12	Robust \${H_infty}\$-Based Synchronization of the Fractional-Order Chaotic Systems by Using New Self-Evolving Nonsingleton Type-2 Fuzzy Neural Networks. IEEE Transactions on Fuzzy Systems, 2016, 24, 1544-1554.	6.5	49
13	A modified sliding mode approach for synchronization of fractional-order chaotic/hyperchaotic systems by using new self-structuring hierarchical type-2 fuzzy neural network. Neurocomputing, 2016, 191, 200-213.	3.5	45
14	Fractional-Order Fuzzy Control Approach for Photovoltaic/Battery Systems under Unknown Dynamics, Variable Irradiation and Temperature. Electronics (Switzerland), 2020, 9, 1455.	1.8	45
15	On the Synchronization and Stabilization of fractional-order chaotic systems: Recent advances and future perspectives. Physica A: Statistical Mechanics and Its Applications, 2020, 551, 124203.	1.2	44
16	Energy management in photovoltaic battery hybrid systems: A novel type-2 fuzzy control. International Journal of Hydrogen Energy, 2020, 45, 20970-20982.	3.8	43
17	Fault Estimation for Mode-Dependent IT2 Fuzzy Systems With Quantized Output Signals. IEEE Transactions on Fuzzy Systems, 2021, 29, 298-309.	6.5	43
18	A robust fuzzy control approach for path-following control of autonomous vehicles. Soft Computing, 2020, 24, 3223-3235.	2.1	41

#	Article	IF	CITATIONS
19	Robust predictive synchronization of uncertain fractional-order time-delayed chaotic systems. Soft Computing, 2019, 23, 6883-6898.	2.1	40
20	Two-mode Indirect Adaptive Control Approach for the Synchronization of Uncertain Chaotic Systems by the Use of a Hierarchical Interval Type-2 Fuzzy Neural Network. IEEE Transactions on Fuzzy Systems, 2014, 22, 1301-1312.	6.5	39
21	Robust fuzzy control for fractional-order systems with estimated fraction-order. Nonlinear Dynamics, 2019, 98, 2375-2385.	2.7	37
22	Observer-based method for synchronization of uncertain fractional order chaotic systems by the use of a general type-2 fuzzy system. Applied Soft Computing Journal, 2016, 49, 544-560.	4.1	36
23	Robust synchronization of uncertain fractional-order chaotic systems with time-varying delay. Nonlinear Dynamics, 2018, 93, 1809-1821.	2.7	36
24	Optimal synchronization of fractional-order chaotic systems subject to unknown fractional order, input nonlinearities and uncertain dynamic using type-2 fuzzy CMAC. Nonlinear Dynamics, 2017, 88, 2993-3002.	2.7	34
25	A non-singleton type-2 fuzzy neural network with adaptive secondary membership for high dimensional applications. Neurocomputing, 2019, 338, 63-71.	3.5	34
26	A machine learning approach for active/reactive power control of grid-connected doubly-fed induction generators. Ain Shams Engineering Journal, 2022, 13, 101564.	3.5	34
27	Optimal Control of an Energy-Storage System in a Microgrid for Reducing Wind-Power Fluctuations. Sustainability, 2022, 14, 6183.	1.6	33
28	Modeling Renewable Energy Systems by a Self-Evolving Nonlinear Consequent Part Recurrent Type-2 Fuzzy System for Power Prediction. Sustainability, 2021, 13, 3301.	1.6	32
29	A new type-3 fuzzy predictive controller for MEMS gyroscopes. Nonlinear Dynamics, 2021, 106, 381-403.	2.7	32
30	Load frequency control for multi-area power systems: A new type-2 fuzzy approach based on Levenberg–Marquardt algorithm. ISA Transactions, 2022, 121, 40-52.	3.1	31
31	A new robust observer-based adaptive type-2 fuzzy control for a class of nonlinear systems. Applied Soft Computing Journal, 2015, 37, 204-216.	4.1	30
32	Dynamic programming strategy based on a type-2 fuzzy wavelet neural network. Nonlinear Dynamics, 2019, 95, 1661-1672.	2.7	29
33	Optimized Type-2 Fuzzy Frequency Control for Multi-Area Power Systems. IEEE Access, 2022, 10, 6989-7002.	2.6	29
34	Synchronization of chaotic systems and identification of nonlinear systems by using recurrent hierarchical type-2 fuzzy neural networks. ISA Transactions, 2015, 58, 318-329.	3.1	28
35	A New General Type-2 Fuzzy Predictive Scheme for PID Tuning. Applied Sciences (Switzerland), 2021, 11, 10392.	1.3	27
36	Optimal Type-3 Fuzzy System for Solving Singular Multi-Pantograph Equations. IEEE Access, 2020, 8, 225692-225702.	2.6	26

#	Article	IF	Citations
37	A deep learned type-2 fuzzy neural network: Singular value decomposition approach. Applied Soft Computing Journal, 2021, 105, 107244.	4.1	24
38	A review on type-2 fuzzy neural networks for system identification. Soft Computing, 2021, 25, 7197-7212.	2.1	23
39	Modeling the Price of Emergency Power Transmission Lines in the Reserve Market Due to the Influence of Renewable Energies. Frontiers in Energy Research, 2022, 9, .	1.2	23
40	A hybrid approach for fault location in power distributed networks: Impedance-based and machine learning technique. Electric Power Systems Research, 2022, 210, 108073.	2.1	23
41	Non-Singleton Type-3 Fuzzy Approach for Flowmeter Fault Detection: Experimental Study in a Gas Industry. Sensors, 2021, 21, 7419.	2.1	22
42	Model Predictive Control Based Type-3 Fuzzy Estimator for Voltage Stabilization of DC Power Converters. IEEE Transactions on Industrial Electronics, 2022, 69, 13849-13858.	5.2	21
43	Stability of Interval Type-3 Fuzzy Controllers for Autonomous Vehicles. Mathematics, 2021, 9, 2742.	1.1	20
44	A dynamic general type-2 fuzzy system with optimized secondary membership for online frequency regulation. ISA Transactions, 2021, 112, 150-160.	3.1	19
45	A new predictive energy management system: Deep learned type-2 fuzzy system based on singular value decommission. Energy Reports, 2022, 8, 722-734.	2.5	19
46	Machine Learning for Modeling the Singular Multi-Pantograph Equations. Entropy, 2020, 22, 1041.	1.1	18
47	A novel adaptive control approach for path tracking control of autonomous vehicles subject to uncertain dynamics. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234, 2115-2126.	1.1	18
48	Medical Image Interpolation Using Recurrent Type-2 Fuzzy Neural Network. Frontiers in Neuroinformatics, 2021, 15, 667375.	1.3	18
49	A novel fractional-order fuzzy control method based on immersion and invariance approach. Applied Soft Computing Journal, 2020, 88, 106043.	4.1	17
50	Stabilization of 5G Telecom Converter-Based Deep Type-3 Fuzzy Machine Learning Control for Telecom Applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 544-548.	2.2	17
51	Non-singleton fuzzy control for multi-synchronization of chaotic systems. Applied Soft Computing Journal, 2021, 99, 106924.	4.1	16
52	Voltage Regulation for Photovoltaics-Battery-Fuel Systems Using Adaptive Group Method of Data Handling Neural Networks (GMDH-NN). IEEE Access, 2020, 8, 213748-213757.	2.6	15
53	A New Data-Driven Control System for MEMSs Gyroscopes: Dynamics Estimation by Type-3 Fuzzy Systems. Micromachines, 2021, 12, 1390.	1.4	15
54	A New Active Fault Tolerant Control System: Predictive Online Fault Estimation. IEEE Access, 2021, 9, 118461-118471.	2.6	13

#	Article	IF	Citations
55	A type-2 fuzzy control for active/reactive power control and energy storage management. Transactions of the Institute of Measurement and Control, 2022, 44, 1014-1028.	1.1	12
56	Frequency Regulation System: A Deep Learning Identification, Type-3 Fuzzy Control and LMI Stability Analysis. Energies, 2021, 14, 7801.	1.6	12
57	Single-Image Reflection Removal Using Deep Learning: A Systematic Review. IEEE Access, 2022, 10, 29937-29953.	2.6	12
58	General type-2 fuzzy multi-switching synchronization of fractional-order chaotic systems. Engineering Applications of Artificial Intelligence, 2021, 100, 104163.	4.3	11
59	A deep learned fuzzy control for inertial sensing: Micro electro mechanical systems. Applied Soft Computing Journal, 2021, 109, 107597.	4.1	11
60	New approach to control the induction motors based on immersion and invariance technique. IET Control Theory and Applications, 2019, 13, 1466-1472.	1,2	10
61	A developed observer-based type-2 fuzzy control for chaotic systems. International Journal of Systems Science, 2023, 54, 2921-2940.	3.7	10
62	A robust control of a class of induction motors using rough type-2 fuzzy neural networks. Soft Computing, 2020, 24, 9809-9819.	2.1	9
63	Optimal Placement and Sizing of Energy-related Devices in Microgrids Using Grasshopper Optimization Algorithm., 2021,,.		9
64	A New Event-Triggered Type-3 Fuzzy Control System for Multi-Agent Systems: Optimal Economic Efficient Approach for Actuator Activating. Electronics (Switzerland), 2021, 10, 3122.	1.8	9
65	A Type-2 Fuzzy Controller for Floating Tension-Leg Platforms in Wind Turbines. Energies, 2022, 15, 1705.	1.6	9
66	Generalized Type-2 Fuzzy Control for Type-I Diabetes: Analytical Robust System. Mathematics, 2022, 10, 690.	1.1	8
67	A Hybrid Predictive Type-3 Fuzzy Control for Time-Delay Multi-Agent Systems. Electronics (Switzerland), 2022, 11, 63.	1.8	8
68	Automatic Control for Time Delay Markov Jump Systems under Polytopic Uncertainties. Mathematics, 2022, 10, 187.	1.1	7
69	A Type-3 Fuzzy Approach for Stabilization and Synchronization of Chaotic Systems: Applicable for Financial and Physical Chaotic Systems. Complexity, 2022, 2022, 1-17.	0.9	7
70	Proportional integral observer based tracking control design for Markov jump systems. Applied Mathematics and Computation, 2021, 410, 126467.	1.4	5
71	A Neural Controller for Induction Motors: Fractional-Order Stability Analysis and Online Learning Algorithm. Mathematics, 2022, 10, 1003.	1.1	5
72	A New Short Term Electrical Load Forecasting by Type-2 Fuzzy Neural Networks. Energies, 2022, 15, 3034.	1.6	4

#	Article	IF	CITATIONS
73	Chaos synchronization of brushes direct current motors for electric vehicle: Adaptive fuzzy immersion and invariance approach. Transactions of the Institute of Measurement and Control, 2021, 43, 178-193.	1.1	3
74	A Type-2 Fuzzy Logic Approach for Forecasting of Effluent Quality Parameters of Wastewater Treatment. Mathematical Problems in Engineering, 2022, 2022, 1-10.	0.6	3
75	A New Robust Control for Induction Motors. IETE Journal of Research, 2022, 68, 1168-1176.	1.8	2
76	Application of artificial intelligence in modeling, control, and fault diagnosis., 2021,, 255-323.		2
77	Multivariable Model Reference Adaptive Control of an Industrial Power Boiler Using Recurrent RBFN. Complexity, 2021, 2021, 1-12.	0.9	2
78	Observer-Based Control for Nonlinear Time-Delayed Asynchronously Switching Systems: A New LMI Approach. Mathematics, 2021, 9, 2968.	1.1	2
79	A Simple Matlab Simulink Model for Adaptive General Type-2 Fuzzy Logic Systems. , 2021, , .		1
80	Converter switching mechanism scheduling by type-2 fuzzy approach for PV/battery/Fuel systems. , 2021, , .		1
81	Designing Multirate Controller for Optimal Tracking of Nonholonomic Laparoscopic Robotic Arm in a Telesurgery System. , 2021, , .		1
82	Response Attenuation of a Structure Equipped with ATMD under Seismic Excitations Using Methods of Online Simple Adaptive Controller and Online Adaptive Type-2 Neural-Fuzzy Controller. Computational Intelligence and Neuroscience, 2022, 2022, 1-25.	1.1	1
83	Square-Root Cubature Kalman Filters for Training Recurrent Type-2 Fuzzy Neural Networks. , 2019, , .		O
84	Designing a fuzzy PI^lambda controller to control the pitch angle in wind turbines under variant speed. Kiyfiyyat Va Bahrah/varÄ«-i á¹£anl'at-i Barq-i ĪrÄn, 2020, 9, 1-15.	0.1	0
85	Corrigendum to "Multivariable Model Reference Adaptive Control of an Industrial Power Boiler Using Recurrent RBFN― Complexity, 2021, 2021, 1-2.	0.9	0
86	A generalized type-2 fuzzy approach for demand response and uncertainty problems in MGs. , 2021, , .		0
87	Hâ^ž-based control of multi-agent systems: Time-delayed signals, unknown leader states and switching graph topologies. PLoS ONE, 2022, 17, e0263017.	1.1	o