Guooe9raldine Gm Masson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8298279/publications.pdf

Version: 2024-02-01

122 papers 6,990 citations

50244 46 h-index 80 g-index

189 all docs

189 docs citations

189 times ranked 4644 citing authors

#	Article	IF	CITATIONS
1	s-Tetrazine: Robust and Green Photoorganocatalyst for Aerobic Oxidation of N,N-Disubstituted Hydroxylamines to Nitrones. Synlett, 2022, 33, 177-181.	1.0	3
2	Electroreductive Crossâ€Coupling of Trifluoromethyl Alkenes and Redox Active Esters for the Synthesis of <i>Gem</i> â€Difluoroalkenes. Chemistry - A European Journal, 2022, 28, .	1.7	19
3	Welcome to Volume 2 of ACS Organic & Inorganic Au. ACS Organic & Inorganic Au, 2022, 2, 1-2.	1.9	0
4	Recent Advances in C(sp ³)–C(sp ³) and C(sp ³)–C(sp ²) Bond Formation through Cathodic Reactions: Reductive and Convergent Paired Electrolyses. ACS Organic & Inorganic Au, 2022, 2, 126-147.	1.9	34
5	Electrochemical tandem trifluoromethylation of allylamines/formal (3 + 2)-cycloaddition for the rapid access to CF3-containing imidazolines and oxazolidines. Organic Chemistry Frontiers, 2021, 8, 288-296.	2.3	10
6	Enantioselective and Diastereodivergent Synthesis of Spiroindolenines via Chiral Phosphoric Acid-Catalyzed Cycloaddition. Journal of the American Chemical Society, 2021, 143, 11611-11619.	6.6	24
7	Chiral Phosphoric Acid-Catalyzed Enantioselective Construction of 2,3-Disubstituted Indolines. Organic Letters, 2021, 23, 442-448.	2.4	28
8	Enamides and dienamides in phosphoric acid-catalysed enantioselective cycloadditions for the synthesis of chiral amines. Chemical Communications, 2021, 57, 4089-4105.	2.2	29
9	Welcome to ACS Organic & Inorganic Au!. ACS Organic & Inorganic Au, 2021, 1, 1-2.	1.9	0
10	Syntheses of new chiral chimeric photo-organocatalysts. RSC Advances, 2021, 11, 36663-36669.	1.7	10
11	Enantioselective Synthesis of Complex Fused Heterocycles through Chiral Phosphoric Acid Catalyzed Intramolecular Inverseâ€Electronâ€Demand Azaâ€Diels–Alder Reactions. Chemistry - A European Journal, 2020, 26, 1406-1413.	1.7	15
12	A straightforward synthesis of a new family of molecules: 2,5,8-trialkoxyheptazines. Application to photoredox catalyzed transformations. Chemical Communications, 2020, 56, 10742-10745.	2.2	21
13	Tritylium assisted iodine catalysis for the synthesis of unsymmetrical triarylmethanes. Organic and Biomolecular Chemistry, 2020, 18, 6502-6508.	1.5	14
14	Preparation of Chiral Photosensitive Organocatalysts and Their Application for the Enantioselective Synthesis of 1,2-Diamines. Journal of Organic Chemistry, 2020, 85, 12843-12855.	1.7	19
15	La Chimie Organique en France: Une Longue Tradition qui Persiste!. Journal of Organic Chemistry, 2020, 85, 11589-11591.	1.7	0
16	Enantioselective Redoxâ€Divergent Chiral Phosphoric Acid Catalyzed Quinone Diels–Alder Reactions. Angewandte Chemie - International Edition, 2020, 59, 8491-8496.	7.2	28
17	Enantioselective Redoxâ€Divergent Chiral Phosphoric Acid Catalyzed Quinone Diels–Alder Reactions. Angewandte Chemie, 2020, 132, 8569-8574.	1.6	8
18	Electrochemical Intramolecular Oxytrifluoromethylation of <i>N</i> -Tethered Alkenyl Alcohols: Synthesis of Functionalized Morpholines. Organic Letters, 2020, 22, 1580-1584.	2.4	48

#	Article	IF	CITATIONS
19	Four-Component Photoredox-Mediated Azidoalkoxy-trifluoromethylation of Alkenes. Organic Letters, 2019, 21, 6005-6010.	2.4	28
20	Aerobic Tetrazineâ€Catalyzed Oxidative Nitrosoâ€Dielsâ€Alder Reaction of Nâ€Arylhydroxylamines with Dienecarbamates: Access to Functionalized 1,6â€Dihydroâ€1,2â€oxazines. ChemCatChem, 2019, 11, 5282-5286.	1.8	6
21	s-Tetrazine Dyes: A Facile Generation of Photoredox Organocatalysts for Routine Oxidations. Journal of Organic Chemistry, 2019, 84, 16139-16146.	1.7	25
22	Combining Organocatalysis and Photoredox Catalysis: An Asymmetric Synthesis of Chiral β―Amino α― Substituted Tryptamines. ChemCatChem, 2019, 11, 5723-5727.	1.8	8
23	Tandem Chiral Cu(II) Phosphate atalyzed Deoxygenation of Nitrones/Enantioselective Povarov Reaction with Enecarbamates. European Journal of Organic Chemistry, 2019, 2019, 5151-5155.	1.2	15
24	Prenatal Diagnosis, Management, and Outcome of Fetal Subdural Haematoma: A Case Report and Systematic Review. Fetal Diagnosis and Therapy, 2019, 46, 285-295.	0.6	7
25	2nd PSL Chemical Biology Symposium (2019): At the Crossroads of Chemistry and Biology. ChemBioChem, 2019, 20, 968-973.	1.3	0
26	Chiral phosphoric acid-catalyzed enantioselective construction of structurally diverse benzothiazolopyrimidines. Chemical Science, 2019, 10, 3765-3769.	3.7	38
27	Catalyst-free cycloaddition of 1,3-diene-1-carbamates with azodicarboxylates: A rapid click reaction. Bioorganic and Medicinal Chemistry, 2019, 27, 2438-2443.	1.4	6
28	Frontispiece: Enantioselective $Br\tilde{A}_{i}$ nsted Acid Catalysis as a Tool for the Synthesis of Natural Products and Pharmaceuticals. Chemistry - A European Journal, 2018, 24, .	1.7	1
29	Enantioselective BrÃ,nsted Acid Catalysis as a Tool for the Synthesis of Natural Products and Pharmaceuticals. Chemistry - A European Journal, 2018, 24, 3925-3943.	1.7	139
30	Ultrafast Maximumâ€Quantum NMR Spectroscopy for the Analysis of Aromatic Mixtures. ChemPhysChem, 2018, 19, 3310-3317.	1.0	12
31	Stereoselectivity Switch in the Trapping of Polar Organometallics with Andersen's Reagentâ€"Access to Highly Stereoenriched Transformable Biphenyls. Journal of Organic Chemistry, 2018, 83, 7751-7761.	1.7	10
32	Highly Diastereo―and Enantioselective Synthesis of Cyclohepta[<i>b</i>]indoles by Chiralâ€Phosphoricâ€Acidâ€Catalyzed (4+3) Cycloaddition. Angewandte Chemie, 2018, 130, 12297-12301.	1.6	18
33	Highly Diastereo―and Enantioselective Synthesis of Cyclohepta[<i>b</i>]indoles by Chiralâ€Phosphoricâ€Acidâ€Catalyzed (4+3) Cycloaddition. Angewandte Chemie - International Edition, 2018, 57, 12121-12125.	7.2	71
34	Asymmetric iodine catalysis-mediated enantioselective oxidative transformations. Organic and Biomolecular Chemistry, 2018, 16, 5386-5402.	1.5	77
35	Visible-Light-Triggered C–C and C–N Bond Formation by C–S Bond Cleavage of Benzylic Thioethers. Organic Letters, 2018, 20, 5247-5250.	2.4	48
36	Enantioselective Three-Component Amination of Enecarbamates Enables the Synthesis of Structurally Complex Small Molecules. Journal of Organic Chemistry, 2017, 82, 1775-1789.	1.7	19

#	Article	IF	Citations
37	Fluorinated Sulfilimino Iminiums: Efficient and Versatile Sources of Perfluoroalkyl Radicals under Photoredox Catalysis. Angewandte Chemie, 2017, 129, 4055-4059.	1.6	22
38	Fluorinated Sulfilimino Iminiums: Efficient and Versatile Sources of Perfluoroalkyl Radicals under Photoredox Catalysis. Angewandte Chemie - International Edition, 2017, 56, 3997-4001.	7.2	66
39	Chiral Hypervalent Iodine(III) Catalyst Promotes Highly Enantioselective Sulfonyl- and Phosphoryl-oxylactonizations. Organic Letters, 2017, 19, 278-281.	2.4	45
40	Visibleâ€Light, Photoredoxâ€Mediated Oxidative Tandem Nitrosoâ€Diels–Alder Reaction of Arylhydroxylamines with Conjugated Dienes. European Journal of Organic Chemistry, 2017, 2017, 2095-2098.	1,2	12
41	Asymmetric α-Sulfonyl- and α-Phosphoryl-Oxylation of Ketones by a Chiral Hypervalent Iodine(III). Journal of Organic Chemistry, 2017, 82, 11877-11883.	1.7	41
42	Enantioselective Organocatalytic Intramolecular Azaâ€Diels–Alder Reaction. Angewandte Chemie, 2017, 129, 10709-10712.	1.6	13
43	Easy Access to Quinolin-2(1H)-ones via a One-Pot Tandem Oxa-Michael–Aldol Sequence. Synlett, 2017, 28, 1724-1728.	1.0	5
44	Enantioselective Organocatalytic Intramolecular Azaâ€Diels–Alder Reaction. Angewandte Chemie - International Edition, 2017, 56, 10573-10576.	7.2	41
45	Photoredox-Catalyzed Three-Component Tandem Process: An Assembly of Complex Trifluoromethylated Phthalans and Isoindolines. Organic Letters, 2016, 18, 2906-2909.	2.4	61
46	Visible-Light Photoredox-Catalyzed Coupling Reaction of Azoles with \hat{l}_{\pm} -Carbamoyl Sulfides. Journal of Organic Chemistry, 2016, 81, 7230-7236.	1.7	24
47	Recent Progress in Visible-Light Photoredox-Catalyzed Intermolecular 1,2-Difunctionalization of Double Bonds via an ATRA-Type Mechanism. Journal of Organic Chemistry, 2016, 81, 6945-6952.	1.7	250
48	Chiral Phosphoric Acid Catalyzed $[3+2]$ Cycloaddition and Tandem Oxidative $[3+2]$ Cycloaddition: Asymmetric Synthesis of Substituted 3-Aminodihydrobenzofurans. Organic Letters, 2016, 18, 3422-3425.	2.4	57
49	Asymmetric Oxidative Nitroso-Diels–Alder Reaction of N-Arylhydroxylamines Catalyzed by a Chiral Phosphoric Acid. Journal of Organic Chemistry, 2016, 81, 10154-10159.	1.7	24
50	Synthesis of New Axially Chiral Iodoarenes. Synthesis, 2016, 48, 302-312.	1.2	28
51	Lewis acids turn unreactive substrates into pure enantiomers. Science, 2016, 351, 918-919.	6.0	3
52	\hat{l}_{\pm} -Carbamoylsulfides as <i>N</i> -Carbamoylimine Precursors in the Visible Light Photoredox-Catalyzed Synthesis of $\hat{l}_{\pm},\hat{l}_{\pm}$ -Disubstituted Amines. Organic Letters, 2016, 18, 1478-1481.	2.4	30
53	Highly Enantioselective Intermolecular Iodo- and Chloroamination of Enecarbamates Catalyzed by Chiral Phosphoric Acids or Calcium Phosphate Salts. Synlett, 2016, 27, 559-563.	1.0	16
54	Provincial museum curators during the Third Republic, becoming professionals?. In Situ: Revue De Patrimoines, 2016, , .	0.0	2

#	Article	IF	Citations
55	Formal Asymmetric Organocatalytic [3+2] Cyclization between Enecarbamates and 3â€Indolylmethanols: Rapid Access to 3â€Aminocyclopenta[<i>b</i>]indoles. Chemistry - A European Journal, 2015, 21, 8399-8402.	1.7	46
56	Three-Component Photoredox-Mediated Chloro-, Bromo-, or Iodotrifluoromethylation of Alkenes. Synthesis, 2015, 47, 2439-2445.	1.2	55
57	Enamide Derivatives: Versatile Building Blocks for Total Synthesis. Synthesis, 2015, 47, 1799-1856.	1.2	134
58	Regio-, Diastereo-, and Enantioselective Nitroso-Diels–Alder Reaction of 1,3-Diene-1-carbamates Catalyzed by Chiral Phosphoric Acids. Journal of the American Chemical Society, 2015, 137, 11950-11953.	6.6	79
59	Catalytic, highly enantioselective, direct amination of enecarbamates. Chemical Communications, 2015, 51, 5383-5386.	2.2	28
60	Chiral Calcium–BINOL Phosphate Catalyzed Diastereo―and Enantioselective Synthesis of <i>syn</i> â€1,2â€Disubstituted 1,2â€Diamines: Scope and Mechanistic Studies. Chemistry - A European Journal, 2015, 21, 1704-1712.	1.7	34
61	Enamide Derivatives: Versatile Building Blocks for Highly Functionalized $\hat{l}\pm,\hat{l}^2$ -Substituted Amines. Synlett, 2014, 25, 2842-2867.	1.0	69
62	lmine and iminium precursors as versatile intermediates inÂenantioselective organocatalysis. Tetrahedron, 2014, 70, 8783-8815.	1.0	61
63	Photoredox-Induced Three-Component Oxy-, Amino-, and Carbotrifluoromethylation of Enecarbamates. Organic Letters, 2014, 16, 1240-1243.	2.4	186
64	Phosphoric Acid Catalyzed Diastereo- and Enantioselective Synthesis of Substituted 1,3-Diaminotetralins. Organic Letters, 2014, 16, 2554-2557.	2.4	23
65	Chiral Phosphoric Acid atalyzed Enantioselective Three―Component Azaâ€Điels–Alder Reactions of Aminopyrroles and Aminopyrazoles. Advanced Synthesis and Catalysis, 2014, 356, 1719-1724.	2.1	37
66	NISâ€Assisted Azaâ€Friedel–Crafts Reaction with αâ€Carbamoysulfides as Precursors of <i>N</i> â€Carbamoylimines. Chemistry - A European Journal, 2014, 20, 3621-3625.	1.7	19
67	Photoredox-Induced Three-Component Azido- and Aminotrifluoromethylation of Alkenes. Organic Letters, 2014, 16, 4340-4343.	2.4	179
68	One pot and selective intermolecular aryl- and heteroaryl-trifluoromethylation of alkenes by photoredox catalysis. Chemical Communications, 2014, 50, 14197-14200.	2.2	109
69	Cerium(IV) Ammonium Nitrate Mediated Three-Component $\hat{l}\pm$ -Allylation of Imine Surrogates. Organic Letters, 2014, 16, 1510-1513.	2.4	18
70	Highly Enantioselective Azaâ€Diels–Alder Reaction of 1â€Azadienes with Enecarbamates Catalyzed by Chiral Phosphoric Acids. Angewandte Chemie - International Edition, 2013, 52, 11088-11091.	7.2	81
71	Catalytic enantioselective [4 + 2]-cycloaddition: a strategy to access aza-hexacycles. Chemical Society Reviews, 2013, 42, 902-923.	18.7	283
72	Chiral Phosphoric Acidâ \in Catalyzed Enantioselective Azaâ \in Friedelâ \in "Crafts Alkylation of Indoles with $\hat{I}^3\hat{a}\in$ Hydroxyâ $\in\hat{I}^3\hat{a}\in$ lactams. Advanced Synthesis and Catalysis, 2013, 355, 836-840.	2.1	39

#	Article	IF	CITATIONS
73	Metalâ€Free Dioxygenation of Enecarbamates Mediated by a Hypervalent Iodine Reagent. European Journal of Organic Chemistry, 2013, 2013, 3978-3982.	1.2	29
74	Ugi Four-Component Reaction of Alcohols: Stoichiometric and Catalytic Oxidation/MCR Sequences. Organic Letters, 2013, 15, 2854-2857.	2.4	34
75	Iron Chlorideâ€Catalyzed Threeâ€Component Domino Sequences: Syntheses of Functionalized αâ€Oxyâ€ <i>N</i> â€acylhemiaminals and αâ€Oxyimides. Advanced Synthesis and Catalysis, 2013, 355, 3563-35	5 <i>6</i> 9 ¹ .	19
76	Re: Who should perform the ultrasound examinations in gynaecology?. The Obstetrician and Gynaecologist, 2013, 15, 279-280.	0.2	0
77	Organocatalytic Enantioselective Oneâ€Pot Fourâ€Component Ugiâ€Type Multicomponent Reaction for the Synthesis of Epoxyâ€tetrahydropyrrolo[3,4â€ <i>b</i>)pyridinâ€5â€ones. Chemistry - A European Journal, 2012, 18, 12624-12627.	1.7	51
78	Amidation of Aldehydes and Alcohols through αâ€lminonitriles and a Sequential Oxidative Threeâ€Component Strecker Reaction/Thioâ€Michael Addition/Aluminaâ€Promoted Hydrolysis Process to Access βâ€Mercaptoamides from Aldehydes, Amines, and Thiols. Chemistry - A European Journal, 2012, 18, 14812-14819.	1.7	35
79	Chiral Phosphoric Acid Catalyzed Inverse-Electron-Demand Aza-Diels–Alder Reaction of Isoeugenol Derivatives. Organic Letters, 2012, 14, 3158-3161.	2.4	91
80	Highly Enantioselective Electrophilic α-Bromination of Enecarbamates: Chiral Phosphoric Acid and Calcium Phosphate Salt Catalysts. Journal of the American Chemical Society, 2012, 134, 10389-10392.	6.6	160
81	Chiral Phosphoric Acidâ€Catalyzed Enantioselective Threeâ€Component Povarov Reaction Using Cyclic Enethioureas as Dienophiles: Stereocontrolled Access to Enantioenriched Hexahydropyrroloquinolines. Chemistry - A European Journal, 2012, 18, 5869-5873.	1.7	80
82	Photoredoxâ€Initiated αâ€Alkylation of Imines through a Threeâ€Component Radical/Cationic Reaction. Chemistry - A European Journal, 2012, 18, 423-427.	1.7	114
83	Exploiting the Divergent Reactivity of Isocyanoacetates: Oneâ€Pot Threeâ€Component Synthesis of Functionalized Angular Furoquinolines. European Journal of Organic Chemistry, 2012, 2012, 475-479.	1.2	22
84	Chiral Calcium Organophosphate-Catalyzed Enantioselective Electrophilic Amination of Enamides. Organic Letters, 2011, 13, 94-97.	2.4	79
85	Chiral Phosphoric Acid-Catalyzed Enantioselective Three-Component Povarov Reaction Using Enecarbamates as Dienophiles: Highly Diastereo- and Enantioselective Synthesis of Substituted 4-Aminotetrahydroquinolines. Journal of the American Chemical Society, 2011, 133, 14804-14813.	6.6	249
86	Catalytic Enantioselective Cycloaddition with Chiral Lewis Bases. Current Organic Chemistry, 2011, 15, 4108-4127.	0.9	11
87	A Practical, Oneâ€Pot Multicomponent Synthesis of αâ€Amidosulfides and Their Application as Latent <i>N</i> â€Acylimines in the Friedel–Crafts Reaction. European Journal of Organic Chemistry, 2011, 2011, 3695-3699.	1.2	24
88	Cinchona Alkaloid Amide Catalyzed Enantioselective Formal [2+2]â€Cycloadditions of Allenoates and Imines: Synthesis of 2,4â€Disubstituted Azetidines. Angewandte Chemie - International Edition, 2011, 50, 5356-5360.	7.2	105
89	Exploiting the Divergent Reactivity of αâ€lsocyanoacetate: Multicomponent Synthesis of 5â€Alkoxyoxazoles and Related Heterocycles. Chemistry - A European Journal, 2011, 17, 880-889.	1.7	73
90	Asymmetric Synthesis of 2,4,6-Trideoxy-4-(dimethylamino)-3-C-methyl-l-lyxohexopyranose (Lemonose). Synlett, 2011, 2011, 576-578.	1.0	1

#	Article	IF	CITATIONS
91	Enantioselective Azaâ€Morita–Baylis–Hillman Reaction Using Aliphatic αâ€Amidosulfones as Imine Surrogates. Advanced Synthesis and Catalysis, 2010, 352, 656-660.	2.1	49
92	Sml2-Mediated Reductive Cross-Coupling Reactions of \hat{l}_{\pm} -Cyclopropyl Nitrones. Synlett, 2010, 2010, 1623-1626.	1.0	0
93	Zinc Chloride Promoted Formal Oxidative Coupling of Aromatic Aldehydes and Isocyanides to α-Ketoamides. Journal of Organic Chemistry, 2010, 75, 2748-2751.	1.7	90
94	Passerini Three-Component Reaction of Alcohols under Catalytic Aerobic Oxidative Conditions. Organic Letters, 2010, 12, 1432-1435.	2.4	80
95	Multicomponent Syntheses of Macrocycles. Topics in Heterocyclic Chemistry, 2010, , 1-24.	0.2	23
96	IBX/TBAB-Mediated Oxidation of Primary Amines to Nitriles. Synthesis, 2009, 2009, 1370-1374.	1.2	3
97	Brønsted Acid Catalyzed Enantioselective Threeâ€Component Reaction Involving the αâ€Addition of Isocyanides to Imines. Angewandte Chemie - International Edition, 2009, 48, 6717-6721.	7.2	161
98	Chiral Br \tilde{A} ,nsted Acid-Catalyzed Enantioselective Three-Component Povarov Reaction. Journal of the American Chemical Society, 2009, 131, 4598-4599.	6.6	376
99	Synthesis of Pyrroles by Consecutive Multicomponent Reaction/[4 + 1] Cycloaddition of \hat{l}_{\pm} -Iminonitriles with Isocyanides. Organic Letters, 2009, 11, 1555-1558.	2.4	109
100	Catalytic Asymmetric Passerini-Type Reaction: Chiral Aluminumâ^Organophosphate-Catalyzed Enantioselective α-Addition of Isocyanides to Aldehydes. Journal of Organic Chemistry, 2009, 74, 8396-8399.	1.7	111
101	Chiral Br \tilde{A} , nsted Acid-Catalyzed Enantioselective Multicomponent Mannich Reaction: Synthesis of <i>anti</i> -1,3-Diamines Using Enecarbamates as Nucleophiles. Organic Letters, 2009, 11, 5546-5549.	2.4	116
102	Invertible Enantioselectivity in 6′-Deoxy-6′-acylamino-β-isocupreidine-Catalyzed Asymmetric Aza-Moritaâ^'Baylisâ^'Hillman Reaction: Key Role of Achiral Additive. Organic Letters, 2009, 11, 4648-4651.	2.4	79
103	Synthetic Studies on (â^')-Lemonomycin: An Efficient Asymmetric Synthesis of Lemonomycinone Amide. Journal of Organic Chemistry, 2009, 74, 2046-2052.	1.7	37
104	Synthesis of αâ€Ketoamides by a Molecularâ€Sievesâ€Promoted Formal Oxidative Coupling of Aliphatic Aldehydes with Isocyanides. Angewandte Chemie - International Edition, 2008, 47, 947-950.	7.2	98
105	One-Pot Three-Component Synthesis of α-Iminonitriles by IBX/TBAB-Mediated Oxidative Strecker Reaction. Organic Letters, 2008, 10, 1509-1512.	2.4	101
106	Highly Enantioselective Aza Moritaâ^'Baylisâ^'Hillman Reaction Catalyzed by Bifunctional \hat{l}^2 -Isocupreidine Derivatives. Journal of the American Chemical Society, 2008, 130, 12596-12597.	6.6	109
107	Catalytic Asymmetric Morita-Baylis-Hillman Reactions of Imines. Synfacts, 2008, 2008, 1215-1215.	0.0	O
108	Ammonium Chloride Promoted Three-Component Synthesis of 5-Iminooxazoline and Its Subsequent Transformation to Macrocyclodepsipeptide. Organic Letters, 2007, 9, 5275-5278.	2.4	74

#	Article	IF	CITATIONS
109	The Enantioselective Morita–Baylis–Hillman Reaction and Its Aza Counterpart. Angewandte Chemie - International Edition, 2007, 46, 4614-4628.	7.2	458
110	Rapid Synthesis of Cyclodepsipeptides Containing a Sugar Amino Acid or a Sugar Amino Alcohol by a Sequence of a Multicomponent Reaction and Acid-Mediated Macrocyclization. Journal of Organic Chemistry, 2007, 72, 1826-1829.	1.7	42
111	Intramolecular Staudinger Ligation towards Biaryl-Containing Lactams. Synlett, 2006, 2006, 865-868.	1.0	3
112	Mild and Chemoselective Peptide-Bond Cleavage of Peptides and Proteins at Azido Homoalanine. Angewandte Chemie - International Edition, 2005, 44, 7946-7950.	7.2	30
113	cis-Stereoselective Sml2-promoted reductive coupling of keto-nitrones: first synthesis of 1-epitrehazolamine. Organic and Biomolecular Chemistry, 2005, 3, 2067.	1.5	27
114	SmI2-Induced Umpolung of the C=N Bond: First Reductive Conjugate Addition of Nitrones to $\hat{l}\pm,\hat{l}^2$ -Unsaturated Esters ChemInform, 2003, 34, no.	0.1	0
115	Sml2-Induced Umpolung of the Cï£ 3 4N Bond: First Reductive Conjugate Addition of Nitrones to $\hat{l}\pm,\hat{l}^2$ -Unsaturated Esters. Angewandte Chemie - International Edition, 2003, 42, 2265-2268.	7.2	91
116	A Concise Formal Synthesisof (S)-Vigabatrin Based on Nitrone Umpolung. Synlett, 2003, 2003, 1527-1529.	1.0	2
117	A General Strategy for the Practical Synthesis of NojirimycinC-Glycosides and Analogues. Extension to the First Reported Example of an Iminosugar 1-Phosphonate. Journal of Organic Chemistry, 2002, 67, 6960-6970.	1.7	64
118	Samarium Diiodide-Induced Reductive Cross-Coupling of Nitrones with Aldehydes and Ketones. Angewandte Chemie - International Edition, 2002, 41, 1772-1775.	7.2	118
119	One-Pot Synthesis of Functionalized Nitrones from Nitro Compounds. Synlett, 2001, 2001, 1281-1283.	1.0	42
120	A New, Stereocontrolled Approach to Iminosugar C-Glycosides from l-Sorbose. Organic Letters, 2000, 2, 2971-2974.	2.4	16
121	Chiral Phosphoric Acid–Catalyzed Enantioselective Formal [4+2] Cycloaddition between Dienecarbamates and 2–Benzothioazolimines. Advanced Synthesis and Catalysis, 0, , .	2.1	10
122	Enantioselective Construction of Tetrasubstituted Carbon Stereocenters via Chiral Phosphoric Acid-Catalyzed Friedel–Craft Alkylation of Indoles with 5-Substituted Hydroxybutyrolactams. Organic Letters, 0, , .	2.4	2