List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8298173/publications.pdf Version: 2024-02-01



ANCELA CILIEEL

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Role of the cellular factor CTCF in the regulation of bovine leukemia virus latency and three-dimensional chromatin organization. Nucleic Acids Research, 2022, 50, 3190-3202. | 6.5 | 5         |
| 2  | Exploring m <sup>6</sup> A and m <sup>5</sup> C Epitranscriptomes upon Viral<br>Infection: an Example with HIV. Journal of Visualized Experiments, 2022, , .                   | 0.2 | 1         |
| 3  | HIV Modifies the m6A and m5C Epitranscriptomic Landscape of the Host Cell. Frontiers in Virology, 2021, 1, .                                                                   | 0.7 | 6         |
| 4  | Single-Cell Analysis Reveals Heterogeneity of Virus Infection, Pathogenicity, and Host Responses: HIV as a Pioneering Example. Annual Review of Virology, 2020, 7, 333-350.    | 3.0 | 15        |
| 5  | Proteo-Transcriptomic Dynamics of Cellular Response to HIV-1 Infection. Scientific Reports, 2019, 9, 213.                                                                      | 1.6 | 24        |
| 6  | Entry of Polarized Effector Cells into Quiescence Forces HIV Latency. MBio, 2019, 10, .                                                                                        | 1.8 | 41        |
| 7  | Single-Cell RNA-Seq Reveals Transcriptional Heterogeneity in Latent and Reactivated HIV-Infected Cells.<br>Cell Reports, 2018, 23, 942-950.                                    | 2.9 | 89        |
| 8  | The use of single-cell RNA-Seq to understand virus–host interactions. Current Opinion in Virology,<br>2018, 29, 39-50.                                                         | 2.6 | 46        |
| 9  | Viral Fitness in Hosts. , 2018, , 2150-2158.                                                                                                                                   |     | Ο         |
| 10 | Single-virus tracking uncovers the missing link between HIV integration site location and viral gene expression. Nature Structural and Molecular Biology, 2017, 24, 8-11.      | 3.6 | 5         |
| 11 | Unravelling HIV-1 Latency, One Cell at a Time. Trends in Microbiology, 2017, 25, 932-941.                                                                                      | 3.5 | 17        |
| 12 | Exploring viral infection using single-cell sequencing. Virus Research, 2017, 239, 55-68.                                                                                      | 1.1 | 23        |
| 13 | Single-cell analysis identifies cellular markers of the HIV permissive cell. PLoS Pathogens, 2017, 13, e1006678.                                                               | 2.1 | 44        |
| 14 | Single-Cell Genomics for Virology. Viruses, 2016, 8, 123.                                                                                                                      | 1.5 | 32        |
| 15 | Innate immune defects in HIV permissive cell lines. Retrovirology, 2016, 13, 43.                                                                                               | 0.9 | 17        |
| 16 | HIV-1 latent reservoir: size matters. Future Virology, 2016, 11, 785-794.                                                                                                      | 0.9 | 18        |
| 17 | Differential expression of IncRNAs during the HIV replication cycle: an underestimated layer in the HIV-host interplay. Scientific Reports, 2016, 6, 36111.                    | 1.6 | 28        |
| 18 | Viral cell biology: HIV RNA gets methylated. Nature Microbiology, 2016, 1, 16037.                                                                                              | 5.9 | 6         |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The benefits of integration. Clinical Microbiology and Infection, 2016, 22, 324-332.                                                                                                        | 2.8 | 23        |
| 20 | Guanylate Binding Protein (GBP) 5 Is an Interferon-Inducible Inhibitor of HIV-1 Infectivity. Cell Host and<br>Microbe, 2016, 19, 504-514.                                                   | 5.1 | 211       |
| 21 | HIV-1 immune activation induces Siglec-1 expression and enhances viral trans-infection in blood and tissue myeloid cells. Retrovirology, 2015, 12, 37.                                      | 0.9 | 85        |
| 22 | Identification of potential HIV restriction factors by combining evolutionary genomic signatures with functional analyses. Retrovirology, 2015, 12, 41.                                     | 0.9 | 78        |
| 23 | Dual and Opposite Effects of hRAD51 Chemical Modulation on HIV-1 Integration. Chemistry and Biology, 2015, 22, 712-723.                                                                     | 6.2 | 8         |
| 24 | Bioinformatics and HIV Latency. Current HIV/AIDS Reports, 2015, 12, 97-106.                                                                                                                 | 1.1 | 12        |
| 25 | Dynamic models of viral replication and latency. Current Opinion in HIV and AIDS, 2015, 10, 90-95.                                                                                          | 1.5 | 8         |
| 26 | Viral Fitness in Hosts. , 2015, , 1-11.                                                                                                                                                     |     | 0         |
| 27 | Dynamics of HIV Latency and Reactivation in a Primary CD4+ T Cell Model. PLoS Pathogens, 2014, 10, e1004156.                                                                                | 2.1 | 70        |
| 28 | GuavaH: a compendium of host genomic data in HIV biology and disease. Retrovirology, 2014, 11, 6.                                                                                           | 0.9 | 13        |
| 29 | Susceptibility and adaptation to human TRIM5α alleles at positive selected sites in HIV-1 capsid. Virology, 2013, 441, 162-170.                                                             | 1.1 | 12        |
| 30 | 24 Hours in the Life of HIV-1 in a T Cell Line. PLoS Pathogens, 2013, 9, e1003161.                                                                                                          | 2.1 | 134       |
| 31 | State of genomics and epigenomics research in the perspective of HIV cure. Current Opinion in HIV and AIDS, 2013, 8, 176-181.                                                               | 1.5 | 5         |
| 32 | Viral Integration and Consequences on Host Gene Expression. , 2012, , 147-175.                                                                                                              |     | 16        |
| 33 | LEDGF/p75 TATA-Less Promoter Is Driven by the Transcription Factor Sp1. Journal of Molecular Biology, 2011, 414, 177-193.                                                                   | 2.0 | 13        |
| 34 | Identification of HIV integration sites in infected host genomic DNA. Methods, 2011, 53, 39-46.                                                                                             | 1.9 | 25        |
| 35 | A gene-rich, transcriptionally active environment and the pre-deposition of repressive marks are predictive of susceptibility to KRAB/KAP1-mediated silencing. BMC Genomics, 2011, 12, 378. | 1.2 | 26        |
| 36 | Estimating the net contribution of interleukinâ€28B variation to spontaneous hepatitis C virus clearance. Hepatology, 2011, 53, 1446-1454.                                                  | 3.6 | 56        |

| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Analysis of HIV-1 Expression Level and Sense of Transcription by High-Throughput Sequencing of the<br>Infected Cell. Journal of Virology, 2011, 85, 6205-6211.                      | 1.5 | 62        |
| 38 | Unique Spectrum of Activity of Prosimian TRIM5Â against Exogenous and Endogenous Retroviruses.<br>Journal of Virology, 2011, 85, 4173-4183.                                         | 1.5 | 25        |
| 39 | ZNRD1 (Zinc Ribbon Domain–Containing 1) Is a Host Cellular Factor That Influences HIVâ€1 Replication<br>and Disease Progression. Clinical Infectious Diseases, 2010, 50, 1022-1032. | 2.9 | 42        |
| 40 | KRAB–Zinc Finger Proteins and KAP1 Can Mediate Long-Range Transcriptional Repression through<br>Heterochromatin Spreading. PLoS Genetics, 2010, 6, e1000869.                        | 1.5 | 309       |
| 41 | Retroviral Integration Site Selection. Viruses, 2010, 2, 111-130.                                                                                                                   | 1.5 | 62        |
| 42 | Evolutionary Trajectories of Primate Genes Involved in HIV Pathogenesis. Molecular Biology and Evolution, 2009, 26, 2865-2875.                                                      | 3.5 | 50        |
| 43 | Methods for integration site distribution analyses in animal cell genomes. Methods, 2009, 47, 261-268.                                                                              | 1.9 | 42        |
| 44 | Analysis of LEDGF/p75 expression regulation. Retrovirology, 2009, 6, .                                                                                                              | 0.9 | 0         |
| 45 | Activity of ancestral restriction factors against ancient retroviruses. Retrovirology, 2009, 6, .                                                                                   | 0.9 | 0         |
| 46 | DNA bar coding and pyrosequencing to analyze adverse events in therapeutic gene transfer. Nucleic<br>Acids Research, 2008, 36, e49-e49.                                             | 6.5 | 91        |
| 47 | Genomic determinants of the efficiency of internal ribosomal entry sites of viral and cellular origin.<br>Nucleic Acids Research, 2008, 36, 6918-6925.                              | 6.5 | 13        |
| 48 | Antiretroviral Activity of Ancestral TRIM51±. Journal of Virology, 2008, 82, 2089-2096.                                                                                             | 1.5 | 27        |
| 49 | In Vitro Whole-Genome Analysis Identifies a Susceptibility Locus for HIV-1. PLoS Biology, 2008, 6, e32.                                                                             | 2.6 | 63        |
| 50 | Mechanisms Governing Lentivirus Integration Site Selection. Current Gene Therapy, 2008, 8, 419-429.                                                                                 | 0.9 | 87        |
| 51 | HIV integration site selection: Analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Research, 2007, 17, 1186-1194.              | 2.4 | 396       |
| 52 | Retroviral DNA integration: HIV and the role of LEDGF/p75. Trends in Genetics, 2006, 22, 388-395.                                                                                   | 2.9 | 100       |
| 53 | Retroviral DNA Integration: Viral and Cellular Determinants of Target-Site Selection. PLoS Pathogens, 2006, 2, e60.                                                                 | 2.1 | 310       |
| 54 | Modulating Target Site Selection During Human Immunodeficiency Virus DNA IntegrationIn Vitrowith<br>an Engineered Tethering Factor. Human Gene Therapy, 2006, 17, 960-967.          | 1.4 | 62        |

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | HIV Integration Site Selection: Targeting in Macrophages and the Effects of Different Routes of Viral Entry. Molecular Therapy, 2006, 14, 218-225.                                                                                                    | 3.7  | 83        |
| 56 | Integration Site Selection by HIV-Based Vectors in Dividing and Growth-Arrested IMR-90 Lung<br>Fibroblasts. Molecular Therapy, 2006, 13, 366-373.                                                                                                     | 3.7  | 57        |
| 57 | Modulating Target Site Selection During Human Immunodeficiency Virus DNA IntegrationIn Vitrowith<br>an Engineered Tethering Factor. Human Gene Therapy, 2006, .                                                                                       | 1.4  | 0         |
| 58 | A role for LEDGF/p75 in targeting HIV DNA integration. Nature Medicine, 2005, 11, 1287-1289.                                                                                                                                                          | 15.2 | 583       |
| 59 | Genome-wide analysis of retroviral DNA integration. Nature Reviews Microbiology, 2005, 3, 848-858.                                                                                                                                                    | 13.6 | 390       |
| 60 | Interactions of Processed Nef (58-206) with Virion Proteins of HIV Type 1. AIDS Research and Human Retroviruses, 2004, 20, 399-407.                                                                                                                   | 0.5  | 6         |
| 61 | Entry and Transcription as Key Determinants of Differences in CD4 T-Cell Permissiveness to Human<br>Immunodeficiency Virus Type 1 Infection. Journal of Virology, 2004, 78, 10747-10754.                                                              | 1.5  | 46        |
| 62 | Protection from HIV-1 infection of primary CD4 T cells by CCR5 silencing is effective for the full spectrum of CCR5 expression. Antiviral Therapy, 2003, 8, 373-7.                                                                                    | 0.6  | 16        |
| 63 | Protection from HIV-1 Infection of Primary Cd4 T Cells by Ccr5 Silencing is Effective for the Full Spectrum of Ccr5 Expression. Antiviral Therapy, 2003, 8, 373-377.                                                                                  | 0.6  | 39        |
| 64 | Individual Contributions of Mutant Protease and Reverse Transcriptase to Viral Infectivity,<br>Replication, and Protein Maturation of Antiretroviral Drug-Resistant Human Immunodeficiency Virus<br>Type 1. Journal of Virology, 2001, 75, 3291-3300. | 1.5  | 79        |
| 65 | The nef Gene Controls Syncytium Formation in Primary Human Lymphocytes and Macrophages Infected by HIV Type 1. AIDS Research and Human Retroviruses, 1998, 14, 1531-1542.                                                                             | 0.5  | 11        |