Andrew Ridgwell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8297949/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate. Science, 2005, 308, 67-71.	12.6	2,365
2	The Geological Record of Ocean Acidification. Science, 2012, 335, 1058-1063.	12.6	828
3	Atmospheric Lifetime of Fossil Fuel Carbon Dioxide. Annual Review of Earth and Planetary Sciences, 2009, 37, 117-134.	11.0	627
4	The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth and Planetary Science Letters, 2005, 234, 299-315.	4.4	460
5	Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature, 2000, 407, 730-733.	27.8	449
6	A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature, 2012, 488, 609-614.	27.8	342
7	Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature, 2016, 533, 380-384.	27.8	327
8	Anthropogenic carbon release rate unprecedented during the past 66 million years. Nature Geoscience, 2016, 9, 325-329.	12.9	295
9	Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum. Nature, 2017, 548, 573-577.	27.8	277
10	Past climates inform our future. Science, 2020, 370, .	12.6	253
11	A Mid Mesozoic Revolution in the regulation of ocean chemistry. Marine Geology, 2005, 217, 339-357.	2.1	241
12	How well do global ocean biogeochemistry models simulate dissolved iron distributions?. Global Biogeochemical Cycles, 2016, 30, 149-174.	4.9	230
13	Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum. Nature Geoscience, 2011, 4, 481-485.	12.9	214
14	Climate model and proxy data constraints on ocean warming across the Paleocene–Eocene Thermal Maximum. Earth-Science Reviews, 2013, 125, 123-145.	9.1	214
15	Long-Term Climate Change Commitment and Reversibility: An EMIC Intercomparison. Journal of Climate, 2013, 26, 5782-5809.	3.2	208
16	Gas hydrates: past and future geohazard?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2369-2393.	3.4	203
17	Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: A model-data comparison. Geology, 2008, 36, 315.	4.4	197
18	Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling. Biogeosciences, 2007, 4, 87-104.	3.3	196

#	Article	IF	CITATIONS
19	Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nature Geoscience, 2010, 3, 196-200.	12.9	186
20	Potential methane reservoirs beneath Antarctica. Nature, 2012, 488, 633-637.	27.8	184
21	Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nature Climate Change, 2016, 6, 402-406.	18.8	184
22	Why marine phytoplankton calcify. Science Advances, 2016, 2, e1501822.	10.3	181
23	Consumption of atmospheric methane by soils: A process-based model. Global Biogeochemical Cycles, 1999, 13, 59-70.	4.9	176
24	Ocean Acidification in Deep Time. Oceanography, 2009, 22, 94-107.	1.0	173
25	Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity. Climate of the Past, 2013, 9, 1111-1140.	3.4	157
26	Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanianâ€Turonian oceanic anoxic event (OAE2): Modelâ€data comparison. Paleoceanography, 2012, 27,	3.0	153
27	Regulation of atmospheric CO2by deep-sea sediments in an Earth system model. Global Biogeochemical Cycles, 2007, 21, n/a-n/a.	4.9	152
28	Carbonate Deposition, Climate Stability, and Neoproterozoic Ice Ages. Science, 2003, 302, 859-862.	12.6	143
29	Marine Ecosystem Responses to Cenozoic Global Change. Science, 2013, 341, 492-498.	12.6	140
30	Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction. Geology, 2008, 36, 747.	4.4	139
31	Modelling dispersal and connectivity of broadcast spawning corals at the global scale. Global Ecology and Biogeography, 2014, 23, 1-11.	5.8	139
32	From laboratory manipulations to Earth system models: scaling calcification impacts of ocean acidification. Biogeosciences, 2009, 6, 2611-2623.	3.3	122
33	A model for orbital pacing of methane hydrate destabilization during the Palaeogene. Nature Geoscience, 2011, 4, 775-778.	12.9	119
34	Late inception of a resiliently oxygenated upper ocean. Science, 2018, 361, 174-177.	12.6	117
35	Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22500-22504.	7.1	116
36	Tackling Regional Climate Change By Leaf Albedo Bio-geoengineering. Current Biology, 2009, 19, 146-150.	3.9	115

#	Article	IF	CITATIONS
37	A Neoproterozoic Transition in the Marine Nitrogen Cycle. Current Biology, 2014, 24, 652-657.	3.9	113
38	Assessing the potential long-term increase of oceanic fossil fuel CO ₂ uptake due to CO ₂ -calcification feedback. Biogeosciences, 2007, 4, 481-492.	3.3	103
39	CO2-driven ocean circulation changes as an amplifier of Paleocene-Eocene thermal maximum hydrate destabilization. Geology, 2010, 38, 875-878.	4.4	100
40	Dust in the Earth system: the biogeochemical linking of land, air and sea. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2002, 360, 2905-2924.	3.4	99
41	Deep water formation in the North Pacific and deglacial CO ₂ rise. Paleoceanography, 2014, 29, 645-667.	3.0	99
42	"Sunshade World― A fully coupled GCM evaluation of the climatic impacts of geoengineering. Geophysical Research Letters, 2008, 35, .	4.0	93
43	The role of ocean transport in the uptake of anthropogenic CO ₂ . Biogeosciences, 2009, 6, 375-390.	3.3	93
44	Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nature Geoscience, 2016, 9, 77-82.	12.9	92
45	Feedback between aeolian dust, climate, and atmospheric CO2in glacial time. Paleoceanography, 2002, 17, 11-11-11.	3.0	91
46	Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet. Science Advances, 2015, 1, e1500589.	10.3	91
47	Implications of coral reef buildup for the controls on atmospheric CO2since the Last Glacial Maximum. Paleoceanography, 2003, 18, n/a-n/a.	3.0	90
48	Mid-Pleistocene revolution and the â€~eccentricity myth'. Geological Society Special Publication, 2005, 247, 19-34.	1.3	90
49	The influence of the biological pump on ocean chemistry: implications for longâ€ŧerm trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems. Geobiology, 2016, 14, 207-219.	2.4	90
50	Are there pre-Quaternary geological analogues for a future greenhouse warming?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 933-956.	3.4	88
51	Antarctic ice sheet fertilises the Southern Ocean. Biogeosciences, 2014, 11, 2635-2643.	3.3	88
52	Ice sheets matter for the global carbon cycle. Nature Communications, 2019, 10, 3567.	12.8	87
53	Sensitivity of climate to cumulative carbon emissions due to compensation of ocean heat and carbon uptake. Nature Geoscience, 2015, 8, 29-34.	12.9	85
54	Millennial timescale carbon cycle and climate change in an efficient Earth system model. Climate Dynamics, 2006, 26, 687-711.	3.8	79

#	Article	IF	CITATIONS
55	Glacial-interglacial variability in atmospheric CO2. Geophysical Monograph Series, 2009, , 251-286.	0.1	77
56	Is the spectral signature of the 100 kyr glacial cycle consistent with a Milankovitch origin?. Paleoceanography, 1999, 14, 437-440.	3.0	74
57	Interpreting transient carbonate compensation depth changes by marine sediment core modeling. Paleoceanography, 2007, 22, .	3.0	74
58	The societal challenge of ocean acidification. Marine Pollution Bulletin, 2010, 60, 787-792.	5.0	73
59	An abyssal carbonate compensation depth overshoot in the aftermath of the Palaeocene–Eocene Thermal Maximum. Nature Geoscience, 2016, 9, 575-580.	12.9	73
60	A Palaeogene perspective on climate sensitivity and methane hydrate instability. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2395-2415.	3.4	71
61	Sensitivity of the global submarine hydrate inventory to scenarios of future climate change. Earth and Planetary Science Letters, 2013, 367, 105-115.	4.4	71
62	Future habitat suitability for coral reef ecosystems under global warming and ocean acidification. Global Change Biology, 2013, 19, 3592-3606.	9.5	71
63	Assessing the regional disparities in geoengineering impacts. Geophysical Research Letters, 2010, 37, .	4.0	69
64	The time scale of the silicate weathering negative feedback on atmospheric CO ₂ . Global Biogeochemical Cycles, 2015, 29, 583-596.	4.9	66
65	Orographic evolution of northern Tibet shaped vegetation and plant diversity in eastern Asia. Science Advances, 2021, 7, .	10.3	66
66	The potential role of the Antarctic Ice Sheet in global biogeochemical cycles. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2013, 104, 55-67.	0.3	65
67	Development of a novel empirical framework for interpreting geological carbon isotope excursions, with implications for the rate of carbon injection across the PETM. Earth and Planetary Science Letters, 2016, 435, 1-13.	4.4	63
68	On the displacive character of the phase transition in quartz: a hard-mode spectroscopy study. Journal of Physics Condensed Matter, 1992, 4, 571-577.	1.8	62
69	Assessment of the spatial variability in particulate organic matter and mineral sinking fluxes in the ocean interior: Implications for the ballast hypothesis. Global Biogeochemical Cycles, 2012, 26, .	4.9	61
70	Temperature-dependent remineralization and carbon cycling in the warm Eocene oceans. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 413, 158-166.	2.3	61
71	Upper ocean oxygenation dynamics from I/Ca ratios during the Cenomanianâ€Turonian OAE 2. Paleoceanography, 2015, 30, 510-526.	3.0	60
72	Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse. Nature Communications, 2020, 11, 4436.	12.8	57

#	Article	IF	CITATIONS
73	Climatic effects of surface albedo geoengineering. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	56
74	Environmental controls on the global distribution of shallowâ€water coral reefs. Journal of Biogeography, 2012, 39, 1508-1523.	3.0	55
75	Understanding the causes and consequences of past marine carbon cycling variability through models. Earth-Science Reviews, 2017, 171, 349-382.	9.1	55
76	Climate–carbon cycle uncertainties and the Paris Agreement. Nature Climate Change, 2018, 8, 609-613.	18.8	55
77	An impulse response function for the "long tail―of excess atmospheric CO ₂ in an Earth system model. Global Biogeochemical Cycles, 2016, 30, 2-17.	4.9	54
78	The Rock Geochemical Model (RokGeM) v0.9. Geoscientific Model Development, 2013, 6, 1543-1573.	3.6	52
79	Surviving rapid climate change in the deep sea during the Paleogene hyperthermals. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9273-9276.	7.1	51
80	Modeling the response of the oceanic Si inventory to perturbation, and consequences for atmospheric CO2. Global Biogeochemical Cycles, 2002, 16, 19-1-19-25.	4.9	50
81	El Niño and coral larval dispersal across the eastern Pacific marine barrier. Nature Communications, 2016, 7, 12571.	12.8	50
82	Ocean warming, not acidification, controlled coccolithophore response during past greenhouse climate change. Geology, 2016, 44, 59-62.	4.4	49
83	Diversity decoupled from ecosystem function and resilience during mass extinction recovery. Nature, 2019, 574, 242-245.	27.8	49
84	A probabilistic assessment of the rapidity of PETM onset. Nature Communications, 2017, 8, 353.	12.8	48
85	An oceanic origin for the increase of atmospheric radiocarbon during the Younger Dryas. Geophysical Research Letters, 2008, 35, .	4.0	44
86	Onset of carbon isotope excursion at the Paleocene-Eocene thermal maximum took millennia, not 13 years. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1062-3.	7.1	44
87	Implications of the glacial CO2"iron hypothesis―for Quaternary climate change. Geochemistry, Geophysics, Geosystems, 2003, 4, n/a-n/a.	2.5	43
88	Climate sensitivity to the carbon cycle modulated by past and future changes in ocean chemistry. Nature Geoscience, 2009, 2, 145-150.	12.9	43
89	Initial assessment of the carbon emission rate and climatic consequences during the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 389, 128-136.	2.3	43
90	Assessing the benefits of crop albedo bio-geoengineering. Environmental Research Letters, 2009, 4, 045110.	5.2	42

#	Article	IF	CITATIONS
91	The fate of the Greenland Ice Sheet in a geoengineered, high CO ₂ world. Environmental Research Letters, 2009, 4, 045109.	5.2	41
92	Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science, 2021, 371, 1148-1152.	12.6	41
93	Expanded oxygen minimum zones during the late Paleoceneâ€early Eocene: Hints from multiproxy comparison and ocean modeling. Paleoceanography, 2016, 31, 1532-1546.	3.0	40
94	Atmospheric Seasonality as an Exoplanet Biosignature. Astrophysical Journal Letters, 2018, 858, L14.	8.3	40
95	The impact of marine nutrient abundance on early eukaryotic ecosystems. Geobiology, 2020, 18, 139-151.	2.4	39
96	An end to the "rain ratio―reign?. Geochemistry, Geophysics, Geosystems, 2003, 4, n/a-n/a.	2.5	38
97	Comment on "Modernâ€age buildup of CO ₂ and its effects on seawater acidity and salinity― by Hugo A. LoÃjiciga. Geophysical Research Letters, 2007, 34, .	4.0	36
98	Overturning circulation, nutrient limitation, and warming in the Glacial North Pacific. Science Advances, 2020, 6, .	10.3	35
99	Assessing the controllability of Arctic sea ice extent by sulfate aerosol geoengineering. Geophysical Research Letters, 2015, 42, 1223-1231.	4.0	34
100	EcoGEnIE 1.0: plankton ecology in the cGEnIE Earth system model. Geoscientific Model Development, 2018, 11, 4241-4267.	3.6	33
101	Evolution of the ocean's "biological pump― Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16485-16486.	7.1	32
102	Recovering the true size of an Eocene hyperthermal from the marine sedimentary record. Paleoceanography, 2013, 28, 700-712.	3.0	32
103	Paleocene/Eocene carbon feedbacks triggered by volcanic activity. Nature Communications, 2021, 12, 5186.	12.8	32
104	A 35-million-year record of seawater stable Sr isotopes reveals a fluctuating global carbon cycle. Science, 2021, 371, 1346-1350.	12.6	31
105	Warm climates of the past—a lesson for the future?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20130146.	3.4	30
106	Fundamentally different global marine nitrogen cycling in response to severe ocean deoxygenation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24979-24984.	7.1	30
107	Unravelling the sources of carbon emissions at the onset of Oceanic Anoxic Event (OAE) 1a. Earth and Planetary Science Letters, 2020, 530, 115947.	4.4	30
108	Vertical decoupling in Late Ordovician anoxia due to reorganization of ocean circulation. Nature Geoscience, 2021, 14, 868-873.	12.9	30

#	Article	IF	CITATIONS
109	Response of deepâ€sea CaCO ₃ sedimentation to Atlantic meridional overturning circulation shutdown. Journal of Geophysical Research, 2008, 113, .	3.3	29
110	Controls on the spatial distribution of oceanic Î ¹³ C _{DIC} . Biogeosciences, 2013, 10, 1815-1833.	3.3	29
111	Characterizing post-industrial changes in the ocean carbon cycle in an Earth system model. Tellus, Series B: Chemical and Physical Meteorology, 2022, 62, 296.	1.6	28
112	Changes in benthic ecosystems and ocean circulation in the Southeast Atlantic across Eocene Thermal Maximum 2. Paleoceanography, 2015, 30, 1059-1077.	3.0	27
113	How warming and steric sea level rise relate to cumulative carbon emissions. Geophysical Research Letters, 2012, 39, .	4.0	26
114	Evaluation of coral reef carbonate production models at a global scale. Biogeosciences, 2015, 12, 1339-1356.	3.3	26
115	Comparative carbon cycle dynamics of the present and last interglacial. Quaternary Science Reviews, 2016, 137, 15-32.	3.0	26
116	Dynamics of sediment flux to a bathyal continental margin section through the Paleocene–Eocene Thermal Maximum. Climate of the Past, 2018, 14, 1035-1049.	3.4	26
117	OMEN-SED 1.0: a novel, numerically efficient organic matter sediment diagenesis module for coupling to Earth system models. Geoscientific Model Development, 2018, 11, 2649-2689.	3.6	25
118	The influence of the ocean circulation state on ocean carbon storage and CO ₂ drawdown potential in an Earth system model. Biogeosciences, 2018, 15, 1367-1393.	3.3	24
119	Oceanâ€ e tmosphere partitioning of anthropogenic carbon dioxide on multimillennial timescales. Global Biogeochemical Cycles, 2010, 24, .	4.9	23
120	Early Cenozoic Decoupling of Climate and Carbonate Compensation Depth Trends. Paleoceanography and Paleoclimatology, 2019, 34, 930-945.	2.9	23
121	Why Dissolved Organics Matter. , 2015, , 1-20.		22
122	Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics. Climate of the Past, 2017, 13, 1381-1401.	3.4	22
123	Linking Marine Plankton Ecosystems and Climate: A New Modeling Approach to the Warm Early Eocene Climate. Paleoceanography and Paleoclimatology, 2018, 33, 1439-1452.	2.9	22
124	Considering the Role of Adaptive Evolution in Models of the Ocean and Climate System. Journal of Advances in Modeling Earth Systems, 2019, 11, 3343-3361.	3.8	22
125	Algal plankton turn to hunting to survive and recover from end-Cretaceous impact darkness. Science Advances, 2020, 6, .	10.3	22
126	Calibration of temperature-dependent ocean microbial processes in the cGENIE.muffin (v0.9.13) Earth system model. Geoscientific Model Development, 2021, 14, 125-149.	3.6	22

#	Article	IF	CITATIONS
127	Reduced effectiveness of terrestrial carbon sequestration due to an antagonistic response of ocean productivity. Geophysical Research Letters, 2002, 29, 19-1-19-4.	4.0	21
128	Mitigation of Extreme Ocean Anoxic Event Conditions by Organic Matter Sulfurization. Paleoceanography and Paleoclimatology, 2019, 34, 476-489.	2.9	21
129	Decreasing Phanerozoic extinction intensity as a consequence of Earth surface oxygenation and metazoan ecophysiology. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
130	A factorial analysis of the marine carbon cycle and ocean circulation controls on atmospheric CO2. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	18
131	A trait-based modelling approach to planktonic foraminifera ecology. Biogeosciences, 2019, 16, 1469-1492.	3.3	18
132	Bistability in the redox chemistry of sediments and oceans. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33043-33050.	7.1	18
133	Tropical coral reef habitat in a geoengineered, highâ€CO ₂ world. Geophysical Research Letters, 2013, 40, 1799-1805.	4.0	17
134	End-Permian marine extinction due to temperature-driven nutrient recycling and euxinia. Nature Geoscience, 2021, 14, 862-867.	12.9	17
135	Strategies in times of crisis—insights into the benthic foraminiferal record of the Palaeocene–Eocene Thermal Maximum. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170328.	3.4	16
136	Post-extinction recovery of the Phanerozoic oceans and biodiversity hotspots. Nature, 2022, 607, 507-511.	27.8	15
137	Geoengineering: taking control of our planet's climate?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 4163-4165.	3.4	14
138	Flooding of the continental shelves as a contributor to deglacial CH ₄ rise. Journal of Quaternary Science, 2012, 27, 800-806.	2.1	14
139	Emulation of long-term changes in global climate: application to the late Pliocene and future. Climate of the Past, 2017, 13, 1539-1571.	3.4	14
140	Geographical variations in the effectiveness and side effects of deep ocean carbon sequestration. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	13
141	Towards an understanding of the Ca isotopic signal related to ocean acidification and alkalinity overshoots in the rock record. Chemical Geology, 2020, 547, 119672.	3.3	13
142	Iron and sulfur cycling in the cGENIE.muffin Earth system model (v0.9.21). Geoscientific Model Development, 2021, 14, 2713-2745.	3.6	12
143	Geological carbon sinks , 0, , 74-97.		12
144	Oceanic and atmospheric methane cycling in the cGENIE Earth system model – release v0.9.14. Geoscientific Model Development, 2020, 13, 5687-5706.	3.6	12

#	Article	IF	CITATIONS
145	Application of sediment core modelling to interpreting the glacial-interglacial record of Southern Ocean silica cycling. Climate of the Past, 2007, 3, 387-396.	3.4	9
146	Variable Câ^•P composition of organic production and its effect on ocean carbon storage in glacial-like model simulations. Biogeosciences, 2020, 17, 2219-2244.	3.3	9
147	Evaluation of Paleoceneâ€Eocene Thermal Maximum Carbon Isotope Record Completeness—An Illustration of the Potential of Dynamic Time Warping in Aligning Paleoâ€Proxy Records. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008620.	2.5	9
148	â€~Geoengineering'–taking Control of Our Planet's Climate. Science Progress, 2009, 92, 139-162.	1.9	8
149	Regional patterns and temporal evolution of ocean iron fertilization and CO2 drawdown during the last glacial termination. Earth and Planetary Science Letters, 2021, 554, 116675.	4.4	8
150	The 'long tail' of anthropogenic CO2 decline in the atmosphere and its consequences for post-closure performance assessments for disposal of radioactive wastes. Mineralogical Magazine, 2015, 79, 1613-1623.	1.4	7
151	Spatial and temporal patterns of oceanacidification during the end-Permian mass extinction – an Earth system model evaluation. , 2015, , 291-306.		7
152	Investigating the benefits and costs of spines and diet on planktonic foraminifera distribution with a trait-based ecosystem model. Marine Micropaleontology, 2021, 166, 102004.	1.2	7
153	Data-constrained assessment of ocean circulation changes since the middle Miocene in an Earth system model. Climate of the Past, 2021, 17, 2223-2254.	3.4	7
154	Reply to 'Constraints on hyperthermals'. Nature Geoscience, 2012, 5, 231-232.	12.9	6
155	Global dust cycle. Geophysical Monograph Series, 2009, , 37-55.	0.1	5
156	Secular Changes in the Importance of Neritic Carbonate Deposition as a Control on the Magnitude and Stability of Neoproterozoic Ice Ages. Geophysical Monograph Series, 2013, , 55-72.	0.1	5
157	Sensitivity of atmospheric CO ₂ to regional variability in particulate organic matter remineralization depths. Biogeosciences, 2019, 16, 2923-2936.	3.3	5
158	Climatic effect of Southern Ocean Fe fertilization: Is the jury still out?. Geochemistry, Geophysics, Geosystems, 2000, 1, n/a-n/a.	2.5	4
159	A lattice-automaton bioturbation simulator with coupled physics, chemistry, and biology in marine sediments (eLABS v0.2). Geoscientific Model Development, 2019, 12, 4469-4496.	3.6	4
160	Ecosystem function after the K/Pg extinction: decoupling of marine carbon pump and diversity. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210863.	2.6	4
161	The atmospheric bridge communicated the <i>Î</i> ¹³ C decline during the last deglaciation to the global upper ocean. Climate of the Past, 2021, 17, 1507-1521.	3.4	4
162	Exploring the impact of climate change on the global distribution of nonâ€spinose planktonic foraminifera using a traitâ€based ecosystem model. Global Change Biology, 2021, , .	9.5	4

#	Article	IF	CITATIONS
163	Climate and climate change. Current Biology, 2009, 19, R563-R566.	3.9	3
164	Can organic matter flux profiles be diagnosed using remineralisation rates derived from observed tracers and modelled ocean transport rates?. Biogeosciences, 2015, 12, 5547-5562.	3.3	3
165	Dust in the Earth System: The Biogeochemical Linking of Land, Air, and Sea. Series on Iraq War and Its Consequences, 2007, , 51-68.	0.1	3
166	A model for marine sedimentary carbonate diagenesis and paleoclimate proxy signal tracking: IMP v1.0. Geoscientific Model Development, 2021, 14, 5999-6023.	3.6	3
167	Coupled climate–carbon cycle simulation of the Last Glacial Maximum atmospheric CO ₂ decrease using a large ensemble of modern plausible parameter sets. Climate of the Past, 2019, 15, 1039-1062.	3.4	2
168	A high-resolution record from Svalbard of carbon release during the Paleocene-Eocene thermal maximum. Journal of Earth Science (Wuhan, China), 2010, 21, 190-190.	3.2	1
169	Ocean acidification in the freezer. Antarctic Science, 2011, 23, 417-417.	0.9	Ο
170	Inclusion of a suite of weathering tracers in the cGENIE Earth system model – muffin release v.0.9.23. Geoscientific Model Development, 2021, 14, 4187-4223.	3.6	0