

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/829780/publications.pdf Version: 2024-02-01

D 7 RESSON

#	Article	IF	CITATIONS
1	Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science, 2013, 342, 1242856.	12.6	1,048
2	Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data. Physical Review Letters, 2014, 113, 101101.	7.8	873
3	Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube. Physical Review Letters, 2015, 115, 081102.	7.8	247
4	Time-Integrated Neutrino Source Searches with 10ÂYears of IceCube Data. Physical Review Letters, 2020, 124, 051103.	7.8	221
5	RICE limits on the diffuse ultrahigh energy neutrino flux. Physical Review D, 2006, 73, .	4.7	170
6	Flavor Ratio of Astrophysical Neutrinos above 35ÂTeV in IceCube. Physical Review Letters, 2015, 114, 171102.	7.8	156
7	Searches for Sterile Neutrinos with the IceCube Detector. Physical Review Letters, 2016, 117, 071801.	7.8	140
8	Characteristics of the Diffuse Astrophysical Electron and Tau Neutrino Flux with Six Years of IceCube High Energy Cascade Data. Physical Review Letters, 2020, 125, 121104.	7.8	137
9	Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10ÂPeV with IceCube. Physical Review Letters, 2016, 117, 241101.	7.8	111
10	Search for annihilating dark matter in the Sun with 3Âyears of IceCube data. European Physical Journal C, 2017, 77, 1.	3.9	111
11	Characteristics of Four Upward-Pointing Cosmic-Ray-like Events Observed with ANITA. Physical Review Letters, 2016, 117, 071101.	7.8	94
12	Observation of an Unusual Upward-Going Cosmic-Ray-like Event in the Third Flight of ANITA. Physical Review Letters, 2018, 121, 161102.	7.8	91
13	Measurement of Atmospheric Neutrino Oscillations at 6–56ÂGeV with IceCube DeepCore. Physical Review Letters, 2018, 120, 071801.	7.8	88
14	South Polar in situ radio-frequency ice attenuation. Journal of Glaciology, 2005, 51, 231-238.	2.2	84
15	Performance and simulation of the RICE detector. Astroparticle Physics, 2003, 19, 15-36.	4.3	76
16	Search for steady point-like sources in the astrophysical muon neutrino flux with 8 years of IceCube data. European Physical Journal C, 2019, 79, 1.	3.9	75
17	Measurement of the Atmospheric <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi>î½</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:math> Flux in IceCube. Physical Review Letters, 2013, 110, 151105.	7.8	64
18	Search for neutrinos from dark matter self-annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore. European Physical Journal C, 2017, 77, 1.	3.9	62

D Z Besson

#	Article	IF	CITATIONS
19	Search for neutrinos from decaying dark matter with IceCube. European Physical Journal C, 2018, 78, 831.	3.9	62
20	eV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory. Physical Review Letters, 2020, 125, 141801.	7.8	57
21	Search for dark matter annihilation in the Galactic Center with IceCube-79. European Physical Journal C, 2015, 75, 1.	3.9	52
22	Design and sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G). Journal of Instrumentation, 2021, 16, P03025.	1.2	52
23	THE FIRST COMBINED SEARCH FOR NEUTRINO POINT-SOURCES IN THE SOUTHERN HEMISPHERE WITH THE ANTARES AND ICECUBE NEUTRINO TELESCOPES. Astrophysical Journal, 2016, 823, 65.	4.5	49
24	Search for non-relativistic magnetic monopoles with IceCube. European Physical Journal C, 2014, 74, 1.	3.9	39
25	Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube. European Physical Journal C, 2015, 75, 116.	3.9	38
26	All-flavour search for neutrinos from dark matter annihilations in the Milky Way with IceCube/DeepCore. European Physical Journal C, 2016, 76, 1.	3.9	37
27	In situ index-of-refraction measurements of the South Polar firn with the RICE detector. Journal of Glaciology, 2004, 50, 522-532.	2.2	34
28	Design and Performance of the ARIANNA HRA-3 Neutrino Detector Systems. IEEE Transactions on Nuclear Science, 2015, 62, 2202-2215.	2.0	29
29	Searches for relativistic magnetic monopoles in IceCube. European Physical Journal C, 2016, 76, 1.	3.9	29
30	Constraints on the diffuse flux of ultrahigh energy neutrinos from four years of Askaryan Radio Array data in two stations. Physical Review D, 2020, 102, .	4.7	29
31	NuRadioMC: simulating the radio emission of neutrinos from interaction to detector. European Physical Journal C, 2020, 80, 1.	3.9	29
32	Multipole analysis of IceCube data to search for dark matter accumulated in the Galactic halo. European Physical Journal C, 2015, 75, 1.	3.9	28
33	Search for relativistic magnetic monopoles withÂtheÂAMANDA-IIÂneutrino telescope. European Physical Journal C, 2010, 69, 361-378.	3.9	26
34	Measurement of the \$\$u _{mu }\$\$ ν μ energy spectrum with IceCube-79. European Physical Journal C, 2017, 77, 692.	3.9	24
35	Constraints on Minute-Scale Transient Astrophysical Neutrino Sources. Physical Review Letters, 2019, 122, 051102.	7.8	23
36	First search for dark matter annihilations in the Earth with the IceCube detector. European Physical Journal C. 2017, 77, 1.	3.9	20

D Z Besson

#	Article	IF	CITATIONS
37	Observation of Radar Echoes from High-Energy Particle Cascades. Physical Review Letters, 2020, 124, 091101.	7.8	19
38	Radio frequency birefringence in south polar ice and implications for neutrino reconstruction. Astroparticle Physics, 2011, 34, 755-768.	4.3	18
39	Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 767, 322-338.	1.6	16
40	The Radar Echo Telescope for Cosmic Rays: Pathfinder experiment for a next-generation neutrino observatory. Physical Review D, 2021, 104, .	4.7	16
41	Implications of ultrahigh energy neutrino flux constraints for Lorentz-invariance violating cosmogenic neutrinos. Physical Review D, 2012, 86, .	4.7	15
42	Modeling ice birefringence and oblique radio wave propagation for neutrino detection at the South Pole. Annals of Glaciology, 2020, 61, 84-91.	1.4	15
43	Reconstructing the neutrino energy for in-ice radio detectors. European Physical Journal C, 2022, 82, 1.	3.9	13
44	Development of an analysis to probe the neutrino mass ordering with atmospheric neutrinos using three years of IceCube DeepCore data. European Physical Journal C, 2020, 80, 1.	3.9	12
45	Search for Multi-flare Neutrino Emissions in 10 yr of IceCube Data from a Catalog of Sources. Astrophysical Journal Letters, 2021, 920, L45.	8.3	12
46	Search for Relativistic Magnetic Monopoles with Eight Years of IceCube Data. Physical Review Letters, 2022, 128, 051101.	7.8	12
47	SEARCHES FOR PERIODIC NEUTRINO EMISSION FROM BINARY SYSTEMS WITH 22 AND 40 STRINGS OF ICECUBE. Astrophysical Journal, 2012, 748, 118.	4.5	11
48	Antarctic radio frequency albedo and implications for cosmic ray reconstruction. Radio Science, 2015, 50, 1-17.	1.6	11
49	Antarctic Surface Reflectivity Measurements from the ANITA-3 and HiCal-1 Experiments. Journal of Astronomical Instrumentation, 2017, 06, 1740002.	1.5	11
50	First upper limits on the radar cross section of cosmic-ray induced extensive air showers. Astroparticle Physics, 2017, 87, 1-17.	4.3	9
51	SIMULATION OF A HYBRID OPTICAL/RADIO/ACOUSTIC EXTENSION TO ICECUBE FOR EHE NEUTRINO DETECTION. International Journal of Modern Physics A, 2006, 21, 259-264.	1.5	8
52	Radio-wave detection of ultra-high-energy neutrinos and cosmic rays. Progress of Theoretical and Experimental Physics, 2017, 2017, .	6.6	8
53	Development of SiPM-Based X-Ray Counting Scanner for Human Inspection. IEEE Transactions on Nuclear Science, 2018, 65, 2013-2020.	2.0	8
54	DHCAL with minimal absorber: measurements with positrons. Journal of Instrumentation, 2016, 11, P05008-P05008.	1.2	7

D Z Besson

#	Article	IF	CITATIONS
55	Particle-level model for radar based detection of high-energy neutrino cascades. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 922, 161-170.	1.6	7
56	Modeling in-ice radio propagation with parabolic equation methods. Physical Review D, 2021, 103, .	4.7	7
57	Radio frequency ice dielectric permittivity measurements using CReSIS data. Radio Science, 2016, 51, 194-212.	1.6	6
58	Velocity independent constraints on spin-dependent DM-nucleon interactions from IceCube and PICO. European Physical Journal C, 2020, 80, 1.	3.9	6
59	Multilayer film shields for the protection of PMT from constant magnetic field. Review of Scientific Instruments, 2015, 86, 013903.	1.3	5
60	Suggestion of coherent radio reflections from an electron-beam induced particle cascade. Physical Review D, 2019, 100, .	4.7	3
61	<i>In situ</i> , broadband measurement of the radio frequency attenuation length at Summit Station, Greenland. Journal of Glaciology, 2022, 68, 1234-1242.	2.2	3
62	RESULTS FROM THE ANITA EXPERIMENT. Modern Physics Letters A, 2007, 22, 2237-2246.	1.2	2
63	Implementation of a custom time-domain firmware trigger for RADAR-based cosmic ray detection. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 890, 126-132.	1.6	2
64	NEUTRINO ASTRONOMY AND COSMIC RAYS AT THE SOUTH POLE: LATEST RESULTS FROM AMANDA AND PERSPECTIVES FOR ICECUBE. International Journal of Modern Physics A, 2005, 20, 6919-6923.	1.5	1
65	TUNKA-133: A new array for the study of ultra-high energy cosmic rays. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 367.	0.6	1
66	Transitions within bottomonium. Surveys in High Energy Physics, 1996, 9, 89-121.	0.6	0
67	Neutrinos. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14201-14202.	7.1	0
68	INTRODUCTION TO THE SALSA, A SALTDOME SHOWER ARRAY AS A GZK NEUTRINO OBSERVATORY. International Journal of Modern Physics A, 2006, 21, 252-253.	1.5	0
69	PRELIMINARY RESULT FROM ANITA EXPERIMENT. Modern Physics Letters A, 2008, 23, 1419-1430.	1.2	0
70	SIMULATION OF A HYBRID OPTICAL/RADIO/ACOUSTIC EXTENSION TO ICECUBE FOR EHE NEUTRINO DETECTION. , 2006, , .		0
71	IceCube: A Multipurpose Neutrino Telescope. Journal of the Physical Society of Japan, 2008, 77, 71-75.	1.6	0