Masahiro Yamamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/829773/publications.pdf

Version: 2024-02-01

32 papers 1,102 citations

20 h-index 32 g-index

36 all docs 36 docs citations

36 times ranked 1232 citing authors

#	Article	IF	Citations
1	The First Bopyrid Isopod from Hydrothermal Vents: Pleurocryptella shinkai sp. nov. (Isopoda:) Tj ETQq1 1 0.784314	4 ₀₉ BT /Ov	erlock 10 Tf
2	Thioester synthesis through geoelectrochemical CO2 fixation on Ni sulfides. Communications Chemistry, 2021, 4, .	4.5	24
3	Dual energy metabolism of the <i>Campylobacterota</i> endosymbiont in the chemosynthetic snail <i>Alviniconcha marisindica</i> ISME Journal, 2020, 14, 1273-1289.	9.8	16
4	Metals likely promoted protometabolism in early ocean alkaline hydrothermal systems. Science Advances, 2019, 5, eaav7848.	10.3	68
5	Geoelectrochemical CO production: Implications for the autotrophic origin of life. Science Advances, 2018, 4, eaao7265.	10.3	41
6	Effects of a long-term rearing system for deep-sea vesicomyid clams on host survival and endosymbiont retention. Fisheries Science, 2018, 84, 41-51.	1.6	4
7	Deepâ€6ea Hydrothermal Fields as Natural Power Plants. ChemElectroChem, 2018, 5, 2162-2166.	3.4	15
8	Cultivation mutualism between a deep-sea vent galatheid crab and its chemosynthetic epibionts. Deep-Sea Research Part I: Oceanographic Research Papers, 2017, 127, 13-20.	1.4	10
9	Spontaneous and Widespread Electricity Generation in Natural Deepâ€ s ea Hydrothermal Fields. Angewandte Chemie, 2017, 129, 5819-5822.	2.0	10
10	Spontaneous and Widespread Electricity Generation in Natural Deepâ€Sea Hydrothermal Fields. Angewandte Chemie - International Edition, 2017, 56, 5725-5728.	13.8	56
11	Molybdenum Sulfide: A Bioinspired Electrocatalyst for Dissimilatory Ammonia Synthesis with Geoelectrical Current. Journal of Physical Chemistry C, 2017, 121, 2154-2164.	3.1	40
12	RÃ⅓cktitelbild: Spontaneous and Widespread Electricity Generation in Natural Deepâ€Sea Hydrothermal Fields (Angew. Chem. 21/2017). Angewandte Chemie, 2017, 129, 6038-6038.	2.0	1
13	Surfing the vegetal pole in a small population: extracellular vertical transmission of an 'intracellular' deep-sea clam symbiont. Royal Society Open Science, 2016, 3, 160130.	2.4	35
14	Comparative Analysis of Microbial Communities in Iron-Dominated Flocculent Mats in Deep-Sea Hydrothermal Environments. Applied and Environmental Microbiology, 2016, 82, 5741-5755.	3.1	26
15	Long-term Cultivation of the Deep-Sea Clam <i>Calyptogena okutanii</i> Changes in the Abundance of Chemoautotrophic Symbiont, Elemental Sulfur, and Mucus. Biological Bulletin, 2016, 230, 257-267.	1.8	16
16	Development of a deep-sea mercury sensor using <i>in situ</i> anodic stripping voltammetry. Geochemical Journal, 2015, 49, 613-620.	1.0	4
17	Developments of deep-sea light and charge pump circuits fixed with an epoxy resin. JAMSTEC Report of Research and Development, 2015, 21, 7-15.	0.2	2
18	Electrochemical CO2 Reduction by Ni-containing Iron Sulfides: How Is CO2 Electrochemically Reduced at Bisulfide-Bearing Deep-sea Hydrothermal Precipitates?. Electrochimica Acta, 2014, 141, 311-318.	5.2	100

#	Article	IF	Citations
19	Generation of Electricity and Illumination by an Environmental Fuel Cell in Deepâ€Sea Hydrothermal Vents. Angewandte Chemie - International Edition, 2013, 52, 10758-10761.	13.8	54
20	Spatial Distribution of Viruses Associated with Planktonic and Attached Microbial Communities in Hydrothermal Environments. Applied and Environmental Microbiology, 2012, 78, 1311-1320.	3.1	42
21	Sulfur Metabolisms in Epsilon- and Gamma-Proteobacteria in Deep-Sea Hydrothermal Fields. Frontiers in Microbiology, 2011, 2, 192.	3.5	129
22	Carboxylation reaction catalyzed by 2-oxoglutarate: ferredoxin oxidoreductases from Hydrogenobacter thermophilus. Extremophiles, 2010, 14, 79-85.	2.3	26
23	Electrical Current Generation across a Black Smoker Chimney. Angewandte Chemie - International Edition, 2010, 49, 7692-7694.	13.8	80
24	Enzymatic and electron paramagnetic resonance studies of anabolic pyruvate synthesis by pyruvate: ferredoxin oxidoreductase from <i>Hydrogenobacterâ€∫thermophilus</i> . FEBS Journal, 2010, 277, 501-510.	4.7	17
25	Molecular characterization of inorganic sulfurâ€compound metabolism in the deepâ€sea epsilonproteobacterium <i>Sulfurovum</i> sp. NBC37â€1. Environmental Microbiology, 2010, 12, 1144-1153.	3.8	70
26	Sequencing and Reverse Transcription-Polymerase Chain Reaction (RT-PCR) Analysis of Four Hydrogenase Gene Clusters from an Obligately Autotrophic Hydrogen-Oxidizing Bacterium, Hydrogenobacter thermophilus TK-6. Journal of Bioscience and Bioengineering, 2007, 104, 470-475.	2.2	10
27	Role of two 2-oxoglutarate:ferredoxin oxidoreductases inHydrogenobacter thermophilusunder aerobic and anaerobic conditions. FEMS Microbiology Letters, 2006, 263, 189-193.	1.8	31
28	Two Tandemly Arranged Ferredoxin Genes in theHydrogenobacter thermophilusGenome: Comparative Characterization of the Recombinant [4Fe–4S] Ferredoxins. Bioscience, Biotechnology and Biochemistry, 2005, 69, 1172-1177.	1.3	15
29	Characterization of two different 2-oxoglutarate:ferredoxin oxidoreductases from Hydrogenobacter thermophilus TK-6. Biochemical and Biophysical Research Communications, 2003, 312, 1297-1302.	2.1	26
30	A Novel Five-Subunit-Type 2-Oxoglutalate:Ferredoxin Oxidoreductases from Hydrogenobacter thermophilus TK-6. Biochemical and Biophysical Research Communications, 2002, 292, 280-286.	2.1	22
31	Growth-phase Dependent Expression of the Mevalonate Pathway in a Terpenoid Antibiotic-producingStreptomycesStrain. Bioscience, Biotechnology and Biochemistry, 2002, 66, 808-819.	1.3	37
32	Cloning of a Gene Cluster Encoding Enzymes Responsible for the Mevalonate Pathway from a Terpenoid-antibiotic-producing Streptomyces Strain. Bioscience, Biotechnology and Biochemistry, 2001, 65, 1627-1635.	1.3	38