
Irmgard Paris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8297339/publications.pdf Version: 2024-02-01

IDMCADD DADIS

#	Article	IF	CITATIONS
1	Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Progress in Neurobiology, 2017, 155, 96-119.	2.8	490
2	Commentary: Evaluation of Models of Parkinson's Disease. Frontiers in Neuroscience, 2016, 10, 161.	1.4	8
3	Aminochrome induces dopaminergic neuronal dysfunction: a new animal model for Parkinson's disease. Cellular and Molecular Life Sciences, 2016, 73, 3583-3597.	2.4	34
4	DT-diaphorase protects astrocytes from aminochrome-induced toxicity. NeuroToxicology, 2016, 55, 10-12.	1.4	25
5	The need of a new and more physiological preclinical model for Parkinson's disease. Cellular and Molecular Life Sciences, 2016, 73, 1381-1382.	2.4	8
6	Impact of Plant-Derived Flavonoids on Neurodegenerative Diseases. Neurotoxicity Research, 2016, 30, 41-52.	1.3	88
7	Aminochrome as New Preclinical Model to Find New Pharmacological Treatment that Stop the Development of Parkinson's Disease. Current Medicinal Chemistry, 2016, 23, 346-359.	1.2	32
8	Molecular and Neurochemical Mechanisms Dopamine Oxidation To O-Quinones in Parkinson's Disease Pathogenesis. Current Topics in Neurotoxicity, 2015, , 205-223.	0.4	1
9	Glutathione Transferase-M2-2 Secreted from Glioblastoma Cell Protects SH-SY5Y Cells from Aminochrome Neurotoxicity. Neurotoxicity Research, 2015, 27, 217-228.	1.3	44
10	DT-Diaphorase Prevents Aminochrome-Induced Alpha-Synuclein Oligomer Formation and Neurotoxicity. Toxicological Sciences, 2015, 145, 37-47.	1.4	64
11	Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction. Autophagy, 2014, 10, 618-630.	4.3	59
12	Protective and toxic roles of dopamine in Parkinson's disease. Journal of Neurochemistry, 2014, 129, 898-915.	2.1	366
13	Mechanisms of Dopamine Oxidation and Parkinson's Disease. , 2014, , 865-883.		15
14	Dopamine and L-dopa as Selective Endogenous Neurotoxins. , 2014, , 199-218.		0
15	One-Electron Reduction of 6-Hydroxydopamine Quinone is Essential in 6-Hydroxydopamine Neurotoxicity. Neurotoxicity Research, 2013, 24, 94-101.	1.3	15
16	Overexpression of VMAT-2 and DT-diaphorase protects substantia nigra-derived cells against aminochrome neurotoxicity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1125-1136.	1.8	49
17	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
18	Dopamine Oxidation and Autophagy. Parkinson's Disease, 2012, 2012, 1-13.	0.6	120

IRMGARD PARIS

#	Article	IF	CITATIONS
19	Protective Effects of Nicotine Against Aminochrome-Induced Toxicity in Substantia Nigra Derived Cells: Implications for Parkinson's Disease. Neurotoxicity Research, 2012, 22, 177-180.	1.3	28
20	The role of metal ions in dopaminergic neuron degeneration in Parkinsonism and Parkinson's disease. , 2012, , 31-39.		3
21	The role of metal ions in dopaminergic neuron degeneration in Parkinsonism and Parkinson's disease. Monatshefte Für Chemie, 2011, 142, 365-374.	0.9	17
22	Autophagy Protects Against Aminochrome-Induced Cell Death in Substantia Nigra-Derived Cell Line. Toxicological Sciences, 2011, 121, 376-388.	1.4	63
23	Aminochrome Induces Disruption of Actin, Alpha-, and Beta-Tubulin Cytoskeleton Networks in Substantia-Nigra-Derived Cell Line. Neurotoxicity Research, 2010, 18, 82-92.	1.3	74
24	Copper·Dopamine Complex Induces Mitochondrial Autophagy Preceding Caspase-independent Apoptotic Cell Death. Journal of Biological Chemistry, 2009, 284, 13306-13315.	1.6	60
25	Molecular and Neurochemical Mechanisms in PD Pathogenesis. Neurotoxicity Research, 2009, 16, 271-279.	1.3	28
26	The catecholaminergic RCSN-3 cell line: A model to study dopamine metabolism. Neurotoxicity Research, 2008, 13, 221-230.	1.3	19
27	Copper Neurotoxicity in Rat Substantia Nigra and Striatum Is Dependent on DT-Diaphorase Inhibition. Chemical Research in Toxicology, 2008, 21, 1180-1185.	1.7	23
28	Inhibition of VMAT-2 and DT-Diaphorase Induce Cell Death in a Substantia Nigra-Derived Cell LineAn Experimental Cell Model for Dopamine Toxicity Studies. Chemical Research in Toxicology, 2007, 20, 776-783.	1.7	74
29	Aminochrome as a preclinical experimental model to study degeneration of dopaminergic neurons in Parkinson's disease. Neurotoxicity Research, 2007, 12, 125-134.	1.3	27
30	Monoamine transporter inhibitors and norepinephrine reduce dopamine-dependent iron toxicity in cells derived from the substantia nigra. Journal of Neurochemistry, 2005, 92, 1021-1032.	2.1	48
31	Dopamine-Dependent Iron Toxicity in Cells Derived from Rat Hypothalamus. Chemical Research in Toxicology, 2005, 18, 415-419.	1.7	71
32	On the neurotoxicity mechanism of leukoaminochrome o-semiquinone radical derived from dopamine oxidation: mitochondria damage, necrosis, and hydroxyl radical formation. Neurobiology of Disease, 2004, 16, 468-477.	2.1	109
33	Possible Role of Salsolinol Quinone Methide in the Decrease of RCSN-3 Cell Survival. Biochemical and Biophysical Research Communications, 2001, 283, 1069-1076.	1.0	26
34	Copper neurotoxicity is dependent on dopamine-mediated copper uptake and one-electron reduction of aminochrome in a rat substantia nigra neuronal cell line. Journal of Neurochemistry, 2001, 77, 519-529.	2.1	116
35	Title is missing!. Molecular and Cellular Biochemistry, 2000, 212, 131-134.	1.4	12