
JerÃ³nimo Buencuerpo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8296945/publications.pdf

Version: 2024-02-01

IEDÃ3NIMO RUENCUEDD

#	Article	IF	CITATIONS
1	Efficient light-trapping in ultrathin GaAs solar cells using quasi-random photonic crystals. Nano Energy, 2022, 96, 107080.	16.0	13
2	High Efficiency Inverted GaAs and GaInP/GaAs Solar Cells With Strainâ€Balanced GaInAs/GaAsP Quantum Wells. Advanced Energy Materials, 2021, 11, 2002874.	19.5	55
3	Optimization of four terminal rear heterojunction GaAs on Si interdigitated back contact tandem solar cells. Applied Physics Letters, 2021, 118, .	3.3	13
4	Graded buffer Bragg reflectors with high reflectivity and transparency for metamorphic optoelectronics. Journal of Applied Physics, 2021, 129, 173102.	2.5	9
5	Rigorous Coupled Wave Analysis of GaAs Thermophotovoltaic Devices with a Patterned Dielectric Back Contact. , 2021, , .		0
6	Fabrication, Measurement, and Modeling of GaInP/GaAs Three-Terminal Cells and Strings. , 2021, , .		4
7	Homogenous Voltage-Matched Strings Using Three-Terminal Tandem Solar Cells: Fundamentals and End Losses. IEEE Journal of Photovoltaics, 2021, 11, 1078-1086.	2.5	12
8	Light absorption enhancement and radiation hardening for triple junction solar cell through bioinspired nanostructures. Bioinspiration and Biomimetics, 2021, 16, 056010.	2.9	2
9	Engineering the reciprocal space for ultrathin GaAs solar cells. Optics and Laser Technology, 2021, 142, 107224.	4.6	11
10	Trapezoidal grid fingers to reduce shadowing loss and improve short circuit current. Solar Energy Materials and Solar Cells, 2021, 231, 111294.	6.2	1
11	Characterization of multiterminal tandem photovoltaic devices and their subcell coupling. Cell Reports Physical Science, 2021, 2, 100677.	5.6	8
12	Femtosecond laser fabrication of LIPSS-based waveplates on metallic surfaces. Applied Surface Science, 2020, 520, 146328.	6.1	28
13	Optically-thick 300 nm GaAs solar cells using adjacent photonic crystals. Optics Express, 2020, 28, 13845.	3.4	20
14	Fabrication of Thin III-V Solar Cells on Ni Films using Electroless Ni Deposition. , 2019, , .		0
15	Dependence of Multijunction Optimal Gaps on Spectral Variability and Other Environmental and Device Parameters. , 2019, , .		0
16	Development of Solar Cells with Trapezoidal Grid Fingers. , 2019, , .		0
17	Rear Heterojunction GaAs Solar Cells With Strain-Balanced GaInAs/GaAsP Quantum Wells. , 2019, , .		1
18	Enabling ultrathin III-V solar cells using dual photonic crystals. , 2019, , .		3

Enabling ultrathin III-V solar cells using dual photonic crystals. , 2019, , . 18

JerÃ³nimo Buencuerpo

#	Article	IF	CITATIONS
19	Polarization conversion on nanostructured metallic surfaces fabricated by LIPSS. , 2019, , .		1
20	Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations. Nature Communications, 2018, 9, 5126.	12.8	28
21	Far-field diffraction of linear chirped gratings. Optics and Laser Technology, 2018, 107, 337-343.	4.6	2
22	Antireflective nanostructures for CPV. AIP Conference Proceedings, 2017, , .	0.4	2
23	Amplification of the Zeroth Order Mode in Ultra-thin Layers. Journal of Green Engineering (discontinued), 2016, 5, 71-82.	0.7	1
24	High transmission nanowire contact arrays with subwavelength spacing. Physica Status Solidi - Rapid Research Letters, 2016, 10, 164-167.	2.4	5
25	Nano-cones for broadband light coupling to high index substrates. Scientific Reports, 2016, 6, 38682.	3.3	17
26	Cloaking of solar cell contacts at the onset of Rayleigh scattering. Scientific Reports, 2016, 6, 28669.	3.3	10
27	Optimum Single-Gap Solar Cells for Missions to Mercury. Journal of Spacecraft and Rockets, 2016, 53, 787-791.	1.9	1
28	Broadband antireflective nano-cones for tandem solar cells. Optics Express, 2015, 23, A322.	3.4	16
29	Light-trapping in photon enhanced thermionic emitters. Optics Express, 2015, 23, A1220.	3.4	14
30	Absorption features of the zero frequency mode in an ultra-thin slab. Applied Physics Letters, 2014, 105, .	3.3	13
31	Photon management with nanostructures on concentrator solar cells. Applied Physics Letters, 2013, 103, .	3.3	7
32	Optical absorption enhancement in a hybrid system photonic crystal – thin substrate for photovoltaic applications. Optics Express, 2012, 20, A452.	3.4	25
33	Optical absorption enhancement in a hybrid system photonic crystal — Thin film for photovoltaic applications. , 2012, , .		1
34	3D-FDTD Analysis of Absorption Enhancement in Nanostructured Thin Film Solar Cells. , 2011, , .		0