
Vassiliy N Bavro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8296906/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3511-3516.	3.3	165
2	Mass spectrometry of membrane transporters reveals subunit stoichiometry and interactions. Nature Methods, 2009, 6, 585-587.	9.0	164
3	Assembly and Channel Opening in a Bacterial Drug Efflux Machine. Molecular Cell, 2008, 30, 114-121.	4.5	155
4	Structural basis of dynamic glycine receptor clustering by gephyrin. EMBO Journal, 2004, 23, 2510-2519.	3.5	147
5	Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chemical Reviews, 2021, 121, 5479-5596.	23.0	103
6	Structure of a KirBac potassium channel with an open bundle crossing indicates a mechanism of channel gating. Nature Structural and Molecular Biology, 2012, 19, 158-163.	3.6	92
7	MacB ABC Transporter Is a Dimer Whose ATPase Activity and Macrolide-binding Capacity Are Regulated by the Membrane Fusion Protein MacA. Journal of Biological Chemistry, 2009, 284, 1145-1154.	1.6	88
8	Ion Mobility Mass Spectrometry of Two Tetrameric Membrane Protein Complexes Reveals Compact Structures and Differences in Stability and Packing. Journal of the American Chemical Society, 2010, 132, 15468-15470.	6.6	77
9	Conformational Changes During the Gating of a Potassium Channel Revealed by Structural Mass Spectrometry. Structure, 2010, 18, 839-846.	1.6	76
10	Assembly and transport mechanism of tripartite drug efflux systems. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 817-825.	1.1	74
11	A model of a transmembrane drug-efflux pump from Gram-negative bacteria. FEBS Letters, 2004, 578, 5-9.	1.3	71
12	Reconstitution and Analysis of the Multienzyme Escherichia coli RNA Degradosome. Journal of Molecular Biology, 2008, 382, 870-883.	2.0	69
13	Crystal structure of the GABA A â€receptorâ€associated protein, GABARAP. EMBO Reports, 2002, 3, 183-189.	2.0	65
14	Architecture and roles of periplasmic adaptor proteins in tripartite eÃ⁻¬"ux assemblies. Frontiers in Microbiology, 2015, 6, 513.	1.5	54
15	Evidence for the Assembly of a Bacterial Tripartite Multidrug Pump with a Stoichiometry of 3:6:3. Journal of Biological Chemistry, 2011, 286, 26900-26912.	1.6	49
16	Outer membrane protein size and LPS O-antigen define protective antibody targeting to the Salmonella surface. Nature Communications, 2020, 11, 851.	5.8	49
17	Tripartite efflux pumps: energy is required for dissociation, but not assembly or opening of the outer membrane channel of the pump. Molecular Microbiology, 2013, 88, 590-602.	1.2	37
18	Identification of binding residues between periplasmic adapter protein (PAP) and RND efflux pumps explains PAP-pump promiscuity and roles in antimicrobial resistance. PLoS Pathogens, 2019, 15, e1008101.	2.1	32

VASSILIY N BAVRO

#	Article	IF	CITATIONS
19	Opening of the Outer Membrane Protein Channel in Tripartite Efflux Pumps Is Induced by Interaction with the Membrane Fusion Partner. Journal of Biological Chemistry, 2011, 286, 5484-5493.	1.6	31
20	Structural and Functional Analysis of the Escherichia coli Acid-Sensing Histidine Kinase EvgS. Journal of Bacteriology, 2017, 199, .	1.0	31
21	Exploring ligand recognition and ion flow in comparative models of the human GABA type A receptor. Journal of Molecular Graphics and Modelling, 2007, 26, 760-774.	1.3	30
22	Mutational and Topological Analysis of the Escherichia coli BamA Protein. PLoS ONE, 2013, 8, e84512.	1.1	29
23	Structure and Mechanism of Drug Efflux Machinery in Gram Negative Bacteria. Current Drug Targets, 2008, 9, 719-728.	1.0	28
24	Genetic assessment of the role of <scp>AcrB</scp> βâ€hairpins in the assembly of the <scp>TolC</scp> – <scp>AcrAB</scp> multidrug efflux pump of <scp><i>E</i></scp> <i>scherichia coli</i> . Molecular Microbiology, 2014, 91, 965-975.	1.2	25
25	Cryo-EM Structure and Molecular Dynamics Analysis of the Fluoroquinolone Resistant Mutant of the AcrB Transporter from Salmonella. Microorganisms, 2020, 8, 943.	1.6	25
26	Structure of dual BON-domain protein DolP identifies phospholipid binding as a new mechanism for protein localisation. ELife, 2020, 9, .	2.8	25
27	A cytosolic copper storage protein provides a second level of copper tolerance in <i>Streptomyces lividans</i> . Metallomics, 2018, 10, 180-193.	1.0	23
28	Structure-Guided Identification of a Nonhuman Morbillivirus with Zoonotic Potential. Journal of Virology, 2018, 92, .	1.5	23
29	Functional Complementation and Genetic Deletion Studies of KirBac Channels. Journal of Biological Chemistry, 2010, 285, 40754-40761.	1.6	22
30	Control of KirBac3.1 Potassium Channel Gating at the Interface between Cytoplasmic Domains. Journal of Biological Chemistry, 2014, 289, 143-151.	1.6	20
31	Crystal structure analysis of peroxidase from the palm tree Chamaerops excelsa. Biochimie, 2015, 111, 58-69.	1.3	20
32	ATP-Binding Cassette Transporter VcaM from Vibrio cholerae is Dependent on the Outer Membrane Factor Family for Its Function. International Journal of Molecular Sciences, 2018, 19, 1000.	1.8	18
33	Crossâ€species chimeras reveal <scp>BamA POTRA</scp> and <scp>β</scp> â€barrel domains must be fineâ€tuned for efficient <scp>OMP</scp> insertion. Molecular Microbiology, 2015, 97, 646-659.	1.2	17
34	Oxidative footprinting in the study of structure and function of membrane proteins: current state and perspectives. Biochemical Society Transactions, 2015, 43, 983-994.	1.6	15
35	Mutations in the TolC Periplasmic Domain Affect Substrate Specificity of the AcrAB-TolC Pump. Frontiers in Molecular Biosciences, 2020, 7, 166.	1.6	12
36	Interchangeability of periplasmic adaptor proteins AcrA and AcrE in forming functional efflux pumps with AcrD in <i>Salmonella enterica</i> serovar Typhimurium. Journal of Antimicrobial Chemotherapy, 2021, 76, 2558-2564.	1.3	11

VASSILIY N BAVRO

#	Article	IF	CITATIONS
37	A role for the periplasmic adaptor protein AcrA in vetting substrate access to the RND efflux transporter AcrB. Scientific Reports, 2022, 12, 4752.	1.6	8
38	Quantitative real-time analysis of the efflux by the MacAB-TolC tripartite efflux pump clarifies the role of ATP hydrolysis within mechanotransmission mechanism. Communications Biology, 2021, 4, 493.	2.0	7
39	Editorial: Bacterial Mechanisms of Antibiotic Resistance: A Structural Perspective. Frontiers in Molecular Biosciences, 2019, 6, 71.	1.6	6
40	The mycolic acid reductase Rv2509 has distinct structural motifs and is essential for growth in slowâ€growing mycobacteria. Molecular Microbiology, 2020, 113, 521-533.	1.2	4
41	Cefotaxime Exposure Selects Mutations within the CA-Domain of <i>envZ</i> Which Promote Antibiotic Resistance but Repress Biofilm Formation in Salmonella. Microbiology Spectrum, 2022, 10, e0214521.	1.2	4
42	The role of bacterial transport systems in the removal of host antimicrobial peptides in Gram-negative bacteria. FEMS Microbiology Reviews, 2022, 46, .	3.9	4
43	Modular Design of the Selectivity Filter Pore Loop in a Novel Family of Prokaryotic â€~Inward Rectifier' (NirBac) channels. Scientific Reports, 2015, 5, 15305.	1.6	2
44	Structure-function analysis of MmpL7-mediated lipid transport in mycobacteria. Cell Surface, 2021, 7, 100062.	1.5	2
45	MacB ABC transporter is a dimer whose ATPase activity and macrolide-binding capacity are regulated by the membrane fusion protein MacA. VOLUME 284 (2009) PAGES 1145-1154. Journal of Biological Chemistry, 2009, 284, 8995.	1.6	2
46	Defining the RND-binding residues of AcrA. Access Microbiology, 2020, 2, .	0.2	1
47	Radiolytic Footprinting Reveals Conformational Changes During Potassium Channel Gating. Biophysical Journal, 2010, 98, 696a.	0.2	0
48	Crystal Structure of a Prokaryotic Kir Channel in an Open Conformation. Biophysical Journal, 2012, 102, 536a.	0.2	0
49	What Keeps TolC Closed? Insights from Molecular Dynamics Simulations. Biophysical Journal, 2016, 110, 625a.	0.2	Ο
50	Multidrug Efflux in the Context of Two-Membrane Cell Envelopes. , 2016, , 99-128.		0
51	Experimental evolution selects clinically relevant antibiotic resistance in biofilms but with collateral tradeoffs. Access Microbiology, 2020, 2, .	0.2	0