Md Palashuddin Sk

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8296823/md-palashuddin-sk-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

21 650 14 23 g-index

23 854 5.5 4.62 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
21	Mechanochemical Synthesis of Sulfur Quantum Dots for Cellular Imaging. <i>ACS Applied Nano Materials</i> , 2021 , 4, 3339-3344	5.6	8
20	Modulating catalytic activity of human topoisomerase II henzyme by fluorescent gold nanoclusters. <i>International Journal of Biological Macromolecules</i> , 2021 , 170, 523-531	7.9	4
19	ReviewAggregation-Induced Emission in Carbon Dots for Potential Applications. <i>ECS Journal of Solid State Science and Technology</i> , 2021 , 10, 021001	2	6
18	Autonomous magnetic microbots for environmental remediation developed by organic waste derived carbon dots. <i>Journal of Environmental Management</i> , 2021 , 297, 113322	7.9	1
17	Nanocomposite of Ag nanoparticles and catalytic fluorescent carbon dots for synergistic bactericidal activity through enhanced reactive oxygen species generation. <i>Nanotechnology</i> , 2020 , 31, 405704	3.4	14
16	Luminescent carbogenic dots for the detection and determination of hemoglobin in real samples. <i>New Journal of Chemistry</i> , 2020 , 44, 6213-6221	3.6	1
15	Luminescent Sulfur Quantum Dots for Colorimetric Discrimination of Multiple Metal Ions. <i>ACS Applied Nano Materials</i> , 2020 , 3, 3044-3049	5.6	23
14	Recent advances in crystalline carbon dots for superior application potential. <i>Materials Advances</i> , 2020 , 1, 525-553	3.3	37
13	Role of surface charge in enhancing antibacterial activity of fluorescent carbon dots. <i>Nanotechnology</i> , 2020 , 31, 095101	3.4	21
12	Emergence of sulfur quantum dots: Unfolding their synthesis, properties, and applications. <i>Advances in Colloid and Interface Science</i> , 2020 , 285, 102274	14.3	16
11	Aggregation-induced red shift in N,S-doped chiral carbon dot emissions for moisture sensing. <i>New Journal of Chemistry</i> , 2019 , 43, 13240-13248	3.6	19
10	Insights on the solvatochromic effects in N-doped yellow-orange emissive carbon dots. <i>New Journal of Chemistry</i> , 2018 , 42, 19837-19843	3.6	23
9	Mechanically exfoliated MoS sheet coupled with conductive polyaniline as a superior supercapacitor electrode material. <i>Journal of Colloid and Interface Science</i> , 2017 , 504, 276-282	9.3	74
8	An Interactive Quantum Dot and Carbon Dot Conjugate for pH-Sensitive and Ratiometric Cu Sensing. <i>ChemPhysChem</i> , 2017 , 18, 610-616	3.2	17
7	Conducting Carbon Dot-Polypyrrole Nanocomposite for Sensitive Detection of Picric acid. <i>ACS Applied Materials & Description of Picric acid. ACS Applied Materials & Description (Materials & Description of Picric acid. ACS Applied Materials & Description of Picric acid. ACS Applied & Description of Picric acid. ACS Applied Materials & Description of Picric acid. ACS Applied Materi</i>	9.5	62
6	Cu-embedded carbon nanoparticles as anticancer agents. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 567	73 - 5677	7 16
5	Luminescent carbon dots for logic operations in two phases. <i>ChemPhysChem</i> , 2015 , 16, 723-7	3.2	10

LIST OF PUBLICATIONS

4	Induction coil heater prepared highly fluorescent carbon dots as invisible ink and explosive sensor. <i>RSC Advances</i> , 2014 , 4, 31994	3.7	61
3	A gold-carbon nanoparticle composite as an efficient catalyst for homocoupling reaction. <i>Chemical Communications</i> , 2013 , 49, 8235-7	5.8	39
2	Presence of amorphous carbon nanoparticles in food caramels. Scientific Reports, 2012, 2, 383	4.9	183
1	Plasmid DNA linearization in the antibacterial action of a new fluorescent Ag nanoparticle-paracetamol dimer composite. <i>Nanoscale</i> , 2011 , 3, 4226-33	7.7	15