FrantiÅ;ek Kovanda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/829662/publications.pdf

Version: 2024-02-01

60 papers

2,139 citations

236612 25 h-index 233125 45 g-index

61 all docs

61 docs citations

61 times ranked

2129 citing authors

#	Article	IF	CITATIONS
1	Hydrothermal deposition as a novel method for the preparation of Co–Mn mixed oxide catalysts supported on stainless steel meshes: application to VOC oxidation. Environmental Science and Pollution Research, 2022, 29, 5172-5183.	2.7	10
2	Modification of Cobalt Oxide Electrochemically Deposited on Stainless Steel Meshes with Co-Mn Thin Films Prepared by Magnetron Sputtering: Effect of Preparation Method and Application to Ethanol Oxidation. Catalysts, 2021, 11, 1453.	1.6	4
3	Structured cobalt oxide catalysts for VOC abatement: the effect of preparation method. Environmental Science and Pollution Research, 2020, 27, 7608-7617.	2.7	15
4	Cobalt Oxide Catalysts in the Form of Thin Films Prepared by Magnetron Sputtering on Stainless-Steel Meshes: Performance in Ethanol Oxidation. Catalysts, 2019, 9, 806.	1.6	28
5	Preparation of cobalt oxide catalysts on stainless steel wire mesh by combination of magnetron sputtering and electrochemical deposition. Catalysis Today, 2019, 334, 13-23.	2.2	19
6	Aluminum wire meshes coated with Co-Mn-Al and Co oxides as catalysts for deep ethanol oxidation. Catalysis Today, 2018, 304, 165-171.	2.2	15
7	The nanoscaled metal-organic framework ICR-2 as a carrier of porphyrins for photodynamic therapy. Beilstein Journal of Nanotechnology, 2018, 9, 2960-2967.	1.5	12
8	Cobalt Oxide Catalysts on Commercial Supports for N ₂ 0 Decomposition. Chemical Engineering and Technology, 2017, 40, 981-990.	0.9	12
9	Cobalt oxide catalysts supported on CeO2–TiO2 for ethanol oxidation and N2O decomposition. Reaction Kinetics, Mechanisms and Catalysis, 2017, 121, 121-139.	0.8	7
10	Hydrotalcite-derived Co-containing mixed metal oxide catalysts for methanol incineration. Journal of Thermal Analysis and Calorimetry, 2017, 129, 1301-1311.	2.0	14
11	Cobalt Oxides Supported Over Ceria–Zirconia Coated Cordierite Monoliths as Catalysts for Deep Oxidation of Ethanol and N2O Decomposition. Catalysis Letters, 2017, 147, 1379-1391.	1.4	17
12	Total oxidation of ethanol over layered double hydroxide-related mixed oxide catalysts: Effect of cation composition. Catalysis Today, 2016, 277, 61-67.	2.2	22
13	Co–Mn–Al mixed oxides as catalysts for ammonia oxidation to N2O. Research on Chemical Intermediates, 2016, 42, 2669-2690.	1.3	12
14	K-Doped Coâ€"Mnâ€"Al Mixed Oxide Catalyst for N ₂ O Abatement from Nitric Acid Plant Waste Gases: Pilot Plant Studies. Industrial & Damp; Engineering Chemistry Research, 2016, 55, 7076-7084.	1.8	14
15	Optimization of Cs content in Co–Mn–Al mixed oxide as catalyst for N2O decomposition. Research on Chemical Intermediates, 2015, 41, 9319-9332.	1.3	5
16	Advantages of stainless steel sieves as support for catalytic N2O decomposition over K-doped Co3O4. Catalysis Today, 2015, 257, 2-10.	2.2	22
17	Preparation of Mg–Al layered double hydroxide/polyamide 6 nanocomposites using Mg–Al–taurate LDH as nanofiller. Applied Clay Science, 2015, 114, 265-272.	2.6	24
18	Effect of precursor synthesis on catalytic activity of Co3O4 in N2O decomposition. Catalysis Today, 2015, 257, 18-25.	2.2	71

#	Article	IF	CITATIONS
19	Thermal transformations of Cu–Mg (Zn)–Al(Fe) hydrotalcite-like materials into metal oxide systems and their catalytic activity in selective oxidation of ammonia to dinitrogen. Journal of Thermal Analysis and Calorimetry, 2013, 114, 731-747.	2.0	35
20	Co–Mn–Al mixed oxides on anodized aluminum supports and their use as catalysts in the total oxidation of ethanol. Applied Catalysis A: General, 2013, 464-465, 181-190.	2.2	32
21	Mixed oxides of transition metals as catalysts for total ethanol oxidation. Chemical Papers, 2012, 66, .	1.0	10
22	Photoactive Self-Standing Films Made of Layered Double Hydroxides with Arranged Porphyrin Molecules. Journal of Physical Chemistry C, 2011, 115, 21700-21706.	1.5	16
23	Electronic nature of potassium promotion effect in Coâ€"Mnâ€"Al mixed oxide on the catalytic decomposition of N2O. Catalysis Communications, 2011, 12, 1055-1058.	1.6	42
24	Supported layered double hydroxide-related mixed oxides and their application in the total oxidation of volatile organic compounds. Applied Clay Science, 2011, 53, 305-316.	2.6	54
25	Intercalation of paracetamol into the hydrotalcite-like host. Journal of Solid State Chemistry, 2011, 184, 3329-3335.	1.4	26
26	N2O catalytic decomposition and temperature programmed desorption tests on alkali metals promoted Co–Mn–Al mixed oxide. Catalysis Today, 2011, 176, 208-211.	2.2	19
27	Supported mixed oxide catalysts for the total oxidation of volatile organic compounds. Catalysis Today, 2011, 176, 110-115.	2.2	14
28	Activity of the Niâ€"Al Mixed Oxides Prepared from Hydrotalcite-Like Precursors in the Oxidative Dehydrogenation of Ethane and Propane. Topics in Catalysis, 2011, 54, 1151-1162.	1.3	28
29	Simulation of N2O Abatement in Waste Gases by Its Decomposition over a K-Promoted Co-Mn-Al Mixed Oxide Catalyst. Chinese Journal of Catalysis, 2011, 32, 816-820.	6.9	12
30	Mg-Al layered double hydroxide intercalated with porphyrin anions: molecular simulations and experiments. Journal of Molecular Modeling, 2010, 16, 223-233.	0.8	20
31	Effect of promoters in Co–Mn–Al mixed oxide catalyst on N2O decomposition. Chemical Engineering Journal, 2010, 160, 480-487.	6.6	72
32	High-temperature X-ray powder diffraction as a tool for characterization of smectites, layered double hydroxides, and their intercalates with porphyrins. Applied Clay Science, 2010, 49, 363-371.	2.6	20
33	Preparation of layered double hydroxides intercalated with organic anions and their application in LDH/poly(butyl methacrylate) nanocomposites. Applied Clay Science, 2010, 48, 260-270.	2.6	99
34	Effect of hydrothermal treatment on properties of Ni–Al layered double hydroxides and related mixed oxides. Journal of Solid State Chemistry, 2009, 182, 27-36.	1.4	92
35	Modification of Co–Mn–Al mixed oxide with potassium and its effect on deep oxidation of VOC. Applied Catalysis A: General, 2009, 361, 106-116.	2.2	162
36	Effect of potassium in calcined Co–Mn–Al layered double hydroxide on the catalytic decomposition of N2O. Applied Catalysis B: Environmental, 2009, 90, 132-140.	10.8	83

#	Article	IF	CITATIONS
37	N2O catalytic decomposition $\hat{a}\in \tilde{a}$ effect of pelleting pressure on activity of Co-Mn-Al mixed oxide catalysts. Chemical Papers, 2009, 63, .	1.0	12
38	The Formation of Layered Double Hydroxides on Alumina Surface in Aqueous Solutions Containing Divalent Metal Cations. Clays and Clay Minerals, 2009, 57, 425-432.	0.6	6
39	Molecular shape selectivity of hydrotalcite in mixed aldol condensations of aldehydes and ketones. Journal of Molecular Catalysis A, 2008, 285, 150-154.	4.8	12
40	Catalytic reduction of nitrous oxide with carbon monoxide over calcined Co–Mn–Al hydrotalcite. Catalysis Today, 2008, 137, 385-389.	2.2	22
41	Application of Calcined Layered Double Hydroxides as Catalysts for Abatement of N2O Emissions. Collection of Czechoslovak Chemical Communications, 2008, 73, 1045-1060.	1.0	4
42	Modification of Co-Mn-Al Mixed Oxide with Promoters and Their Effect on Properties and Activity in VOC Total Oxidation. Collection of Czechoslovak Chemical Communications, 2008, 73, 1000-1014.	1.0	1
43	Rehydration of Calcined Mg-Al Hydrotalcite in Acidified Chloride-Containing Aqueous Solution. Collection of Czechoslovak Chemical Communications, 2007, 72, 1284-1294.	1.0	6
44	Layered Double Hydroxides with Intercalated Porphyrins as Photofunctional Materials:Â Subtle Structural Changes Modify Singlet Oxygen Production. Chemistry of Materials, 2007, 19, 3822-3829.	3.2	58
45	Effect of Mn/Al ratio in Co–Mn–Al mixed oxide catalysts prepared from hydrotalcite-like precursors on catalytic decomposition of N2O. Catalysis Today, 2007, 119, 233-238.	2.2	73
46	Structure–activity relationship in the N2O decomposition over Ni-(Mg)-Al and Ni-(Mg)-Mn mixed oxides prepared from hydrotalcite-like precursors. Journal of Molecular Catalysis A, 2006, 248, 210-219.	4.8	52
47	Mixed oxides obtained from Co and Mn containing layered double hydroxides: Preparation, characterization, and catalytic properties. Journal of Solid State Chemistry, 2006, 179, 812-823.	1.4	116
48	Catalytic decomposition of nitrous oxide over catalysts prepared from Co/Mg-Mn/Al hydrotalcite-like compounds. Applied Catalysis B: Environmental, 2005, 60, 289-297.	10.8	75
49	Thermal behaviour of Cu–Mg–Mn and Ni–Mg–Mn layered double hydroxides and characterization of formed oxides. Applied Clay Science, 2005, 28, 121-136.	2.6	36
50	Crystallization of synthetic hydrotalcite under hydrothermal conditions. Applied Clay Science, 2005, 28, 101-109.	2.6	80
51	Removal of As(V) species from extremely contaminated mining water. Applied Clay Science, 2005, 28, 31-42.	2.6	33
52	Voltammetric and X-ray diffraction analysis of the early stages of the thermal crystallization of mixed Cu,Mn oxides. Journal of Solid State Electrochemistry, 2004, 8, 252-259.	1.2	11
53	Thermal behaviour of synthetic pyroaurite-like anionic clay. Journal of Thermal Analysis and Calorimetry, 2003, 71, 727-737.	2.0	31
54	Sorption of As(V) Species from Aqueous Systems. Water, Air, and Soil Pollution, 2003, 149, 251-267.	1.1	57

#	Article	lF	CITATIONS
55	Thermal behaviour of Ni–Mn layered double hydroxide and characterization of formed oxides. Solid State Sciences, 2003, 5, 1019-1026.	1.5	71
56	Thermal Behaviour of Layered Double Hydroxides Studied by Emanation Thermal Analysis. Solid State Phenomena, 2003, 90-91, 475-480.	0.3	1
57	Preparation and characterisation of activated Ni (Mn)/Mg/Al hydrotalcites for combustion catalysis. Catalysis Today, 2002, 76, 43-53.	2.2	51
58	Characterization of activated Cu/Mg/Al hydrotalcites and their catalytic activity in toluene combustion. Applied Clay Science, 2001, 18, 71-80.	2.6	106
59	Removal of Anions from Solution by Calcined Hydrotalcite and Regeneration of Used Sorbent in Repeated Calcination-Rehydration-Anion Exchange Processes. Collection of Czechoslovak Chemical Communications, 1999, 64, 1517-1528.	1.0	65
60	Experimental evaluation of a kinetic method for the study of non-catalysed heterogeneous reactions in solid-liquid systems: leaching of apatite by dilute nitric acid. Journal of Chemical Technology and Biotechnology, 1998, 72, 356-364.	1.6	0