
Salwinder Dhaliwal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8296478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review. Environmental Science and Pollution Research, 2020, 27, 1319-1333.	5.3	246
2	Evaluation of Efficacy of ZnO Nanoparticles as Remedial Zinc Nanofertilizer for Rice. Journal of Soil Science and Plant Nutrition, 2019, 19, 379-389.	3.4	99
3	Impact assessment of metal contamination in surface water of Sutlej River (India) on human health risks. Environmental Pollution, 2020, 265, 114907.	7.5	87
4	Effect of manures and fertilizers on soil physical properties, build-up of macro and micronutrients and uptake in soil under different cropping systems: a review. Journal of Plant Nutrition, 2019, 42, 2873-2900.	1.9	71
5	Long-Term Effect of Integrated Nutrient Management of Properties of Typic Ustochrept After 23 Cycles of an Irrigated Rice (<i>Oryza sativa</i> L.) – Wheat (<i>Triticum aestivum</i> L.) System. Agroecology and Sustainable Food Systems, 2010, 34, 724-743.	0.9	68
6	Phytoavailability and human risk assessment of heavy metals in soils and food crops around Sutlej river, India. Chemosphere, 2021, 263, 128321.	8.2	67
7	Variation in melon (Cucumis melo) landraces adapted to the humid tropics of southern India. Genetic Resources and Crop Evolution, 2011, 58, 225-243.	1.6	62
8	Biofortification—A Frontier Novel Approach to Enrich Micronutrients in Field Crops to Encounter the Nutritional Security. Molecules, 2022, 27, 1340.	3.8	51
9	Effect of tillage and straw return on carbon footprints, soil organic carbon fractions and soil microbial community in different textured soils under rice–wheat rotation: a review. Reviews in Environmental Science and Biotechnology, 2020, 19, 103-115.	8.1	46
10	Impact of agricultural management practices on soil carbon sequestration and its monitoring through simulation models and remote sensing techniques: A review. Critical Reviews in Environmental Science and Technology, 2022, 52, 1-49.	12.8	46
11	Agronomic biofortification of chickpea with zinc and iron through application of zinc and urea. Communications in Soil Science and Plant Analysis, 2019, 50, 1864-1877.	1.4	33
12	Agronomic fortification of rice and wheat grains with zinc for nutritional security. Current Science, 2015, 109, 1171.	0.8	33
13	Effect of Sewage Sludge and Rice Straw Compost on Yield, Micronutrient Availability and Soil Quality under Rice–Wheat System. Communications in Soil Science and Plant Analysis, 2019, 50, 1943-1954.	1.4	32
14	Zinc biofortification of bread wheat, triticale, and durum wheat cultivars by foliar zinc fertilization. Journal of Plant Nutrition, 2019, 42, 813-822.	1.9	28
15	A New Approach in Agronomic Biofortification for Improving Zinc and Iron Content in Chickpea (Cicer) Tj ETQq1 Journal of Soil Science and Plant Nutrition, 2021, 21, 883-896.	1 0.78431 3.4	4 rgBT /Ov∈ 28
16	Soil Test Based Fertilizer Application Improves Productivity, Profitability and Nutrient Use Efficiency of Rice (Oryza sativa L.) under Direct Seeded Condition. Agronomy, 2021, 11, 1756.	3.0	26
17	Comparative Efficiency of Mineral, Chelated and Nano Forms of Zinc and Iron for Improvement of Zinc and Iron in Chickpea (Cicer arietinum L.) through Biofortification. Agronomy, 2021, 11, 2436.	3.0	26
18	Pre-monsoon spatial distribution of available micronutrients and sulphur in surface soils and their management zones in Indian Indo-Gangetic Plain. PLoS ONE, 2020, 15, e0234053.	2.5	22

#	Article	IF	CITATIONS
19	Impact of micronutrients in mitigation of abiotic stresses in soils and plants—A progressive step toward crop security and nutritional quality. Advances in Agronomy, 2022, , 1-78.	5.2	21
20	Long-term effects of intensive rice–wheat and agroforestry based cropping systems on build-up of nutrients and budgets in alluvial soils of Punjab, India. Archives of Agronomy and Soil Science, 2020, 66, 330-342.	2.6	19
21	Herbage Production, Nutritional Composition and Quality of Teosinte under Fe Fertilization. International Journal of Agriculture and Biology, 2016, 18, 319-329.	0.4	18
22	Enrichment of Zinc and Iron Micronutrients in Lentil (Lens culinaris Medik.) through Biofortification. Molecules, 2021, 26, 7671.	3.8	18
23	Cadmium Accumulation Potential of Brassica Species Grown in Metal Spiked Loamy Sand Soil. Soil and Sediment Contamination, 2020, 29, 638-649.	1.9	17
24	Appraisal of pollution of potentially toxic elements in different soils collected around the industrial area. Heliyon, 2021, 7, e08122.	3.2	17
25	Characterization and optimization of spray dried iron and zinc nanoencapsules based on potato starch and maltodextrin. Carbohydrate Polymers, 2022, 282, 119107.	10.2	17
26	Symbiotic Parameters, Growth, Productivity and Profitability of Chickpea as Influenced by Zinc Sulphate and Urea Application. Journal of Soil Science and Plant Nutrition, 2020, 20, 738-750.	3.4	16
27	Assessment of Sequestered Organic Carbon and Its Pools Under Different Agricultural Land-Uses in the Semi-Arid Soils of South-Western Punjab, India. Journal of Soil Science and Plant Nutrition, 2020, 20, 259-273.	3.4	16
28	Zinc biofortification of dual-purpose cowpea [Vigna unguiculata (L.) Walp.] for enhancing the productivity and nutritional quality in a semi-arid regions of India. Archives of Agronomy and Soil Science, 0, , 1-15.	2.6	15
29	Interactive Effects of Foliar Application of Zinc, Iron and Nitrogen on Productivity and Nutritional Quality of Indian Mustard (Brassica juncea L.). Agronomy, 2021, 11, 2333.	3.0	15
30	Nutrient Use Efficiency as a Strong Indicator of Nutritional Security and Builders of Soil Nutrient Status through Integrated Nutrient Management Technology in a Rice-Wheat System in Northwestern India. Sustainability, 2021, 13, 4551.	3.2	13
31	Dynamics of Soil Cationic Micronutrients in a Chronosequence of Poplar (Populus deltoides) Tj ETQq1 1 0.78431- 2025-2041.	4 rgBT /Ov 3.4	verlock 10 Tf 12
32	Fodder quality improvement and enrichment of oats with Cu through biofortification: a technique to reduce animal malnutrition. Journal of Plant Nutrition, 2020, 43, 1378-1389.	1.9	12
33	Effect of cadmium and ethylenediamine tetraacetic acid supplementation on cadmium accumulation by roots of Brassica species in Cd spiked soil. Environmental Science and Pollution Research, 2022, 29, 6000-6009.	5.3	11
34	Effect of Land-uses on Physico-Chemical Properties and Nutrient Status of Surface (0-15 cm) and Sub-Surface (15-30 cm) Layers in Soils of South-Western Punjab, India. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 2659-2671.	0.1	11
35	Rice residue incorporation and nitrogen application: effects on yield and micronutrient transformations under rice–wheat cropping system. Journal of Plant Nutrition, 2020, 43, 2697-2711.	1.9	10
36	Cadmium phytoremediation potential of Brassica genotypes grown in Cd spiked Loamy sand soils: Accumulation and tolerance. Chemosphere, 2022, 302, 134842.	8.2	10

SALWINDER DHALIWAL

#	Article	IF	CITATIONS
37	Micro-nutrient pools and their mobility in relation to land-use system in a cold high altitude Himalayan mountainous region. Agroforestry Systems, 2021, 95, 1395-1412.	2.0	9
38	Long-Term Influence of Nutrient Management on Carbon and Nutrients In Typic-Ustochrept Soils. Communications in Soil Science and Plant Analysis, 2019, 50, 2420-2428.	1.4	8
39	Assessment of Seasonal Variability in Soil Nutrients and Its Impact on Soil Quality under Different Land Use Systems of Lower Shiwalik Foothills of Himalaya, India. Sustainability, 2021, 13, 1398.	3.2	8
40	Assessment of Agroeconomic Indicators of Sesamum indicum L. as Influenced by Application of Boron at Different Levels and Plant Growth Stages. Molecules, 2021, 26, 6699.	3.8	8
41	The Pedospheric Variation of DTPA-Extractable Zn, Fe, Mn, Cu and Other Physicochemical Characteristics in Major Soil Orders in Existing Land Use Systems of Punjab, India. Sustainability, 2022, 14, 29.	3.2	8
42	Long-Term Field and Horticultural Crops Intensification in Semiarid Regions Influence the Soil Physiobiochemical Properties and Nutrients Status. Agronomy, 2022, 12, 1010.	3.0	8
43	Long-Term Integrated Nutrient Management in the Maize–Wheat Cropping System in Alluvial Soils of North-Western India: Influence on Soil Organic Carbon, Microbial Activity and Nutrient Status. Agronomy, 2021, 11, 2258.	3.0	7
44	Distribution of different forms of Mn and their association with soil properties in arid zone soils of Punjab, India. Archives of Agronomy and Soil Science, 2011, 57, 15-26.	2.6	6
45	Conservation agricultural practices under organic farming. , 2021, , 17-37.		6
46	Potential Ecological Impacts of Heavy Metals in Sediments of Industrially Contaminated Perennial Drain of India. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 949-958.	2.7	6
47	Removal of Biomass and Nutrients by Weeds and Direct-Seeded Rice under Conservation Agriculture in Light-Textured Soils of North-Western India. Plants, 2021, 10, 2431.	3.5	6
48	Interactive Effects of Molybdenum, Zinc and Iron on the Grain Yield, Quality, and Nodulation of Cowpea (Vigna unguiculata (L.) Walp.) in North-Western India. Molecules, 2022, 27, 3622.	3.8	5
49	Crop establishment methods: foliar and basal nourishment of rice (Oryza sativa) cultivation affecting growth parameters, water saving, productivity and soil physical properties. Paddy and Water Environment, 2016, 14, 373-386.	1.8	3
50	Zinc fractions and nutrition of maize (Zea mays L.) as affected by Olsen-P levels in soil. Nutrient Cycling in Agroecosystems, 2021, 120, 257-269.	2.2	3
51	Ensuring yield sustainability and nutritional security through enriching manures with fertilizers under rice–wheat system in North-western India. Journal of Plant Nutrition, 2022, 45, 540-557.	1.9	3
52	Impact of Integrated Nutrient Management on Transformations of Micronutrients and Uptake by Wheat Crop in North-western India. Journal of Soil Science and Plant Nutrition, 2021, 21, 2932-2945.	3.4	3
53	Influence of zinc fertilization levels and frequencies on crop productivity, zinc uptake and buildup of soil zinc in maize–wheat system. Journal of Plant Nutrition, 0, , 1-12.	1.9	3
54	Biofortification of Soybean (Glycine max L.) through FeSO4·7H2O to Enhance Yield, Iron Nutrition and Economic Outcomes in Sandy Loam Soils of India. Agriculture (Switzerland), 2022, 12, 586.	3.1	3

#	Article	IF	CITATIONS
55	Foliar zinc application for zinc biofortification in diverse wheat genotypes under low Zn soil. Cereal Research Communications, 2022, 50, 1269-1277.	1.6	2
56	Zinc Phasing and Fertilization Effects on Soil Properties and Some Agromorphological Parameters in Maize–Wheat Cropping System. Communications in Soil Science and Plant Analysis, 2022, 53, 453-462.	1.4	2
57	Desiccant seed dryer. International Journal of Ambient Energy, 2006, 27, 52-56.	2.5	1
58	Assessment of soil organic carbon stocks in relation to variation in physiography under sub-mountainous Shiwalik ranges of lower Himalayas, India. Carbon Management, 0, , 1-9.	2.4	1
59	Monitoring and assessment of soil quality based on micronutrients and physicochemical characteristics in semi-arid submountainous Shiwalik ranges of lower Himalayas, India. Environmental Monitoring and Assessment, 2021, 193, 639.	2.7	1
60	Effect of nutrient management practices on wheat grain quality underBasmatiRice-wheat system. Agricultural Research Journal, 2015, 52, 43.	0.2	1
61	Yield and zinc accumulation response of basmati rice to incremental zinc fertilisation of a zinc-deficient soil. Crop and Pasture Science, 2022, , .	1.5	1
62	Biofortification of wheat with Mn through tank mixed formulations of MnSO ₄ 7H ₂ O and CO(NH ₂) ₂ —a fast mode of Mn accumulation on light textured soils of Punjab, India. Journal of Plant Nutrition, 2022, 45, 1348-1359.	1.9	1
63	Biofortification of linseed (<i>Linum usitatissimum</i> L.) through mineral and chelated forms of Zn on yield, Zn accumulation, quality parameters, efficiency indices and economic under low Zn soils of North-Western India. Journal of Plant Nutrition, 2023, 46, 356-369.	1.9	1
64	Impact of NPK Enriched Bio-Compost on Rice Yield and Sustainability of Nutrients in Sandy Loam Soils of India. Communications in Soil Science and Plant Analysis, 0, , 1-12.	1.4	1
65	A data warehouse for designed experiments. Computational Statistics, 2000, 15, 99-108.	1.5	0
66	Agronomic Strategies for Improving Micronutrient Use Efficiency in Crops for Nutritional and Food Security. , 2021, , 123-156.		0