Philippe Zinck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8296420/publications.pdf

Version: 2024-02-01

		230014		263392
78	2,312	27		45
papers	citations	h-index		g-index
			. '	
85	85	85		2046
all docs	docs citations	times ranked		citing authors

#	Article	IF	Citations
1	The Impact of Diethyl Furan-2,5-dicarboxylate as an Aromatic Biobased Monomer toward Lipase-Catalyzed Synthesis of Semiaromatic Copolyesters. ACS Applied Polymer Materials, 2022, 4, 1387-1400.	2.0	11
2	Cyclodextrins Initiated Ring-Opening Polymerization of Lactide Using 4-Dimethylaminopyridine (DMAP) as Catalyst: Study of DMAP/ \hat{l}^2 -CD Inclusion Complex and Access to New Structures. Molecules, 2022, 27, 1083.	1.7	5
3	Poly(L-lactide) Epimerization and Chain Scission in the Presence of Organic Bases. Macromol, 2022, 2, 236-246.	2.4	3
4	Cellulose nanocrystals modification by grafting from ring opening polymerization of a cyclic carbonate. Carbohydrate Polymers, 2022, 295, 119840.	5.1	7
5	A one pot one step combined radical and ring-opening route for the dual functionalization of starch in aqueous medium. Carbohydrate Polymers, 2021, 254, 117399.	5.1	3
6	Toward Olefin Multiblock Copolymers with Tailored Properties: A Molecular Perspective. Macromolecular Theory and Simulations, 2021, 30, 2100003.	0.6	3
7	Lactide Lactone Chain Shuttling Copolymerization Mediated by an Aminobisphenolate Supported Aluminum Complex and Al(O <i>i</i> Pr) ₃ : Access to New Polylactide Based Block Copolymers. Journal of the American Chemical Society, 2021, 143, 21206-21210.	6.6	14
8	Organocatalyzed ring opening polymerization of lactide from the surface of cellulose nanofibrils. Carbohydrate Polymers, 2020, 250, 116974.	5.1	14
9	Lipase-catalysed polycondensation of levulinic acid derived diol-diamide monomers: access to new poly(ester- <i>co</i> -amide)s. Polymer Chemistry, 2020, 11, 7506-7514.	1.9	6
10	Enzymatic Polycondensation of 1,6-Hexanediol and Diethyl Adipate: A Statistical Approach Predicting the Key-Parameters in Solution and in Bulk. Polymers, 2020, 12, 1907.	2.0	11
11	Organocatalytic sequential ring-opening polymerization of a cyclic ester and anionic polymerization of a vinyl monomer. Chemical Communications, 2020, 56, 8067-8070.	2.2	5
12	Epimerization and chain scission of polylactides in the presence of an organic base, TBD. Polymer Degradation and Stability, 2020, 181, 109188.	2.7	10
13	Organocatalysts for the Synthesis of Poly(ethylene terephthalateâ€∢i>co∢/i>â€isosorbide terephthalate): A Combined Experimental and DFT Study. Macromolecular Materials and Engineering, 2019, 304, 1900298.	1.7	11
14	Efficient One-Pot Synthesis of End-Functionalized <i>trans</i> -Stereoregular Polydiene Macromonomers. Macromolecules, 2019, 52, 1210-1219.	2.2	29
15	Synthesis of levulinic acid based poly(amine- <i>co</i> -ester)s. Green Chemistry, 2019, 21, 123-128.	4.6	18
16	Intelligent Machine Learning: Tailor-Making Macromolecules. Polymers, 2019, 11, 579.	2.0	21
17	Reductive Amination/Cyclization of Methyl Levulinate with Aspartic Acid: Towards Renewable Polyesters with a Pendant Lactam Unit. ChemSusChem, 2019, 12, 3370-3376.	3.6	12
18	Polymer "ruthenium-cyclopentadienyl―conjugates - New emerging anti-cancer drugs. European Journal of Medicinal Chemistry, 2019, 168, 373-384.	2.6	26

#	Article	IF	Citations
19	Structural characterization and mechanical properties of dextrin-graft-poly(butyl) Tj ETQq1 1 0.784314 rgBT /Over	lock 10 Tf	50 742 Td
20	Intelligent Monte Carlo: A New Paradigm for Inverse Polymerization Engineering. Macromolecular Theory and Simulations, 2018, 27, 1700106.	0.6	29
21	Modification of starch by graft copolymerization. Starch/Staerke, 2018, 70, 1600351.	1.1	77
22	Isoprene chain shuttling polymerisation between cis and trans regulating catalysts: straightforward access to a new material. Chemical Communications, 2017, 53, 5330-5333.	2.2	35
23	Unspoken aspects of chain shuttling reactions: Patterning the molecular landscape of olefin multi-block copolymers. Polymer, 2017, 116, 55-75.	1.8	24
24	Silica-Grafted Lanthanum Benzyl Species: Synthesis, Characterization, and Catalytic Applications. Organometallics, 2017, 36, 3912-3920.	1.1	10
25	Bimetallic Catalytic Systems Based on Sb, Ge and Ti for the Synthesis of Poly(ethylene) Tj ETQq1 1 0.784314 rgBT	/Oyerlock	10 Tf 50 5
26	Adenine as an organocatalyst for the ring-opening polymerization of lactide: scope, mechanism and access to adenine-functionalized polylactide. Reaction Chemistry and Engineering, 2016, 1, 508-520.	1.9	19
27	Unexpected reactivities in chain shuttling copolymerizations. Polymer International, 2016, 65, 11-15.	1.6	23
28	βâ€Diketiminateâ€supported magnesium alkyl: synthesis, structure and application as coâ€catalyst for polymerizations mediated by a lanthanum halfâ€sandwich complex. Applied Organometallic Chemistry, 2016, 30, 26-31.	1.7	9
29	Isoprene polymerization mediated by vanadium-[ONNO] complexes. Dalton Transactions, 2016, 45, 12069-12077.	1.6	13
30	Bis(phenolate)amine-supported lanthanide borohydride complexes for styrene and trans-1,4-isoprene (co-)polymerisations. Dalton Transactions, 2015, 44, 12312-12325.	1.6	28
31	New acid/base salts as coâ€catalysts for the organocatalyzed ring opening polymerization of lactide. Journal of Polymer Science Part A, 2015, 53, 659-664.	2.5	17
32	Isoprene–Styrene Chain Shuttling Copolymerization Mediated by a Lanthanide Halfâ€Sandwich Complex and a Lanthanidocene: Straightforward Access to a New Type of Thermoplastic Elastomers. Angewandte Chemie - International Edition, 2014, 53, 4638-4641.	7.2	67
33	Polymyrcene microstructure revisited from precise high-field nuclear magnetic resonance analysis. Polymer, 2014, 55, 3869-3878.	1.8	42
34	Coordinative Chain Transfer Copolymerization and Terpolymerization of Conjugated Dienes. Macromolecules, 2014, 47, 4538-4547.	2.2	74
35	Brønsted acid-catalyzed polymerization of ε-caprolactone in water: A mild and straightforward route to poly(ε-caprolactone)- <i>graft</i> -water-soluble polysaccharides. Journal of Polymer Science Part A, 2014, 52, 2139-2145.	2.5	18
36	Chapter 15. Polyester functionalized carbohydrates via organocatalyzed ring-opening polymerization. Carbohydrate Chemistry, 2014, , 298-311.	0.3	5

#	Article	IF	CITATIONS
37	Ringâ€opening polymerization of lactones using binaphthylâ€diyl hydrogen phosphate as organocatalyst and resulting monosaccharide functionalization of polylactones. Journal of Polymer Science Part A, 2013, 51, 2279-2287.	2.5	29
38	First polymer "ruthenium-cyclopentadienyl―complex as potential anticancer agent. Journal of Inorganic Biochemistry, 2013, 127, 79-81.	1.5	48
39	Balancing crystalline and amorphous domains in PLA through star-structured polylactides with dual plasticizer/nucleating agentÂfunctionality. Polymer, 2013, 54, 7058-7070.	1.8	41
40	Trans-stereospecific polymerization of butadiene and random copolymerization with styrene using borohydrido neodymium/magnesium dialkyl catalysts. European Polymer Journal, 2013, 49, 4130-4140.	2.6	39
41	Coordinative Chain Transfer Polymerization. Chemical Reviews, 2013, 113, 3836-3857.	23.0	326
42	Ring-opening polymerization of cyclic esters initiated by cyclodextrins. Polymer Chemistry, 2012, 3, 1119.	1.9	14
43	Isoprene polymerization using a neodymium phenolate pre-catalyst combined to aluminum based co-catalysts. European Polymer Journal, 2012, 48, 1289-1294.	2.6	20
44	Tuning polyolefins and polydienes microstructure and architecture via coordinative chain transfer polymerization. Polymer International, 2012, 61, 2-5.	1.6	29
45	Highly stereoselective coordination polymerization of βâ€myrcene from a lanthanideâ€based catalyst: Access to bioâ€sourced elastomers. Journal of Polymer Science Part A, 2012, 50, 2898-2905.	2.5	90
46	Precipitation polymerization of $\hat{l}\mu\text{-caprolactone}$ in water using metal triflates as catalysts. Polymer Bulletin, 2012, 69, 757-763.	1.7	8
47	Polymerization of É>-caprolactone using ruthenium(II) mixed metallocene catalysts and isopropyl alcohol: Living character and mechanistic study. Journal of Molecular Catalysis A, 2011, 346, 102-110.	4.8	9
48	Access to new carbohydrate-functionalized polylactides via organocatalyzed ring-opening polymerization. Polymer, 2011, 52, 5018-5026.	1.8	42
49	Borohydrido rare earth based coordinative chain transfer copolymerization: A convenient tool for tuning the microstructure of isoprene/styrene copolymers. Journal of Polymer Science Part A, 2011, 49, 1615-1620.	2.5	49
50	Halfâ€lanthanocene/dialkylmagnesiumâ€mediated coordinative chain transfer copolymerization of styrene and hexene. Journal of Polymer Science Part A, 2011, 49, 3778-3782.	2.5	20
51	Sample size dependence of flaw distributions for the prediction of brittle solids strength using additive Weibull bimodal distributions. Engineering Fracture Mechanics, 2011, 78, 1323-1327.	2.0	3
52	Organometallic catalysis: From concepts to selected applications. Comptes Rendus Chimie, 2010, 13, 304-314.	0.2	13
53	Reversible coordinative chain transfer polymerization of styrene by rare earth borohydrides, chlorides/dialkylmagnesium systems. Journal of Polymer Science Part A, 2010, 48, 802-814.	2.5	38
54	Rare earths/main group metal alkyls catalytic systems for the 1,4â€ <i>trans</i> stereoselective coordinative chain transfer polymerization of isoprene. Journal of Polymer Science Part A, 2010, 48, 4640-4647.	2.5	43

#	Article	IF	CITATIONS
55	Catalytic Chain Transfer (coâ€)Polymerization: Unprecedented Polyisoprene CCG and a New Concept to Tune the Composition of a Statistical Copolymer. Macromolecular Rapid Communications, 2009, 30, 528-531.	2.0	52
56	One-step synthesis of polyesters specialties for biomedical applications. Reviews in Environmental Science and Biotechnology, 2009, 8, 231-234.	3.9	19
57	On the number-average molecular weight of poly(1,4-trans isoprene) determined by conventional GPC. Polymer Testing, 2009, 28, 106-108.	2.3	27
58	Functionalization of syndiotactic polystyrene. Progress in Polymer Science, 2009, 34, 369-392.	11.8	88
59	Thermo-hydrolytic resistance of polyepoxide–glass fibres interfaces by the microbond test. Composites Science and Technology, 2008, 68, 2028-2033.	3.8	15
60	Polyepoxide–water interactions: Influence of the chemical structure of the network. Polymer Degradation and Stability, 2008, 93, 1231-1237.	2.7	10
61	Half-lanthanidocenes catalysts via the "borohydride/alkyl―route: A simple approach of ligand screening for the controlled polymerization of styrene. Comptes Rendus Chimie, 2008, 11, 595-602.	0.2	7
62	New ionic half-metallocenes of early lanthanides. Journal of Alloys and Compounds, 2008, 451, 352-357.	2.8	26
63	Dynamics of Amorphous and Semicrystalline 1,4- <i>trans</i> -Poly(isoprene) by Dielectric Spectroscopy. Macromolecules, 2008, 41, 8669-8676.	2.2	42
64	A New Family of Styrene/Diene Rubbers. Macromolecular Chemistry and Physics, 2007, 208, 973-978.	1.1	32
65	Macromol. Chem. Phys. 8/2007. Macromolecular Chemistry and Physics, 2007, 208, 1024-1024.	1.1	0
66	In situ generated half-lanthanidocene based catalysts for the controlled oligomerisation of styrene: Selectivity, block copolymerisation and chain transfer. Polymer, 2007, 48, 4609-4614.	1.8	54
67	Borohydrido Rare Earth Complexes as Precatalysts for the Polymerisation of Styrene. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2006, 632, 1943-1944.	0.6	33
68	Nanoscale Blends between Immiscible Polymers via Simultaneous Non-Interfering Polymerisation. Macromolecular Chemistry and Physics, 2005, 206, 553-558.	1.1	4
69	The Mechanism of Diene Polymerisation by Organolanthanide Catalysts Deduced from Microwave Experiments. Macromolecular Rapid Communications, 2005, 26, 46-51.	2.0	23
70	On the hybrid character of glass fibres surface networks. Journal of Materials Science, 2005, 40, 2759-2760.	1.7	6
71	On the significance and description of the size effect in multimodal fracture behavior. Experimental assessment on E-glass fibers. Engineering Fracture Mechanics, 2002, 69, 1049-1055.	2.0	10
72	Photoelastic studies of residual stresses around fillers embedded in an epoxy matrix. Macromolecular Symposia, 2001, 169, 197-210.	0.4	11

#	Article	IF	CITATION
73	Title is missing!. Journal of Materials Science, 2001, 36, 5245-5252.	1.7	83
74	Are microcomposites realistic models of the fibre/matrix interface? I. Micromechanical modelling. Polymer, 2001, 42, 5401-5413.	1.8	48
75	Are microcomposites realistic models of the fibre/matrix interface? II. Physico-chemical approach. Polymer, 2001, 42, 6641-6650.	1.8	28
76	Extrapolation techniques at short gauge lengths based on the weakest link concept for fibres exhibiting multiple failure modes. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1999, 79, 2103-2122.	0.8	24
77	Title is missing!. Journal of Materials Science, 1999, 34, 2121-2133.	1.7	69
78	Synthetic Strategies for Biomedical Polyesters Specialties. , 0, , .		0