
Mary E Pownall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8296275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adaptation of the carbamoyl-phosphate synthetase enzyme in an extremophile fish. Royal Society Open Science, 2020, 7, 201200.	2.4	5
2	Machine learning discriminates a movement disorder in a zebrafish model of Parkinson's disease. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	25
3	Exploring the Expression of Cardiac Regulators in a Vertebrate Extremophile: The Cichlid Fish Oreochromis (Alcolapia) alcalica. Journal of Developmental Biology, 2020, 8, 22.	1.7	2
4	Skeletal muscle differentiation drives a dramatic downregulation of RNA polymerase III activity and differential expression of Polr3g isoforms. Developmental Biology, 2019, 454, 74-84.	2.0	10
5	Transcriptional up-regulation of BAG3, a Chaperone Assisted Selective Autophagy factor, in animal models of KY-deficient hereditary myopathy. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	3
6	An analysis of MyoD-dependent transcription using CRISPR/Cas9 gene targeting in Xenopus tropicalis embryos. Mechanisms of Development, 2017, 146, 1-9.	1.7	10
7	Regulation of Hedgehog Signalling Inside and Outside the Cell. Journal of Developmental Biology, 2016, 4, 23.	1.7	61
8	Using Confocal Analysis of Xenopus laevis to Investigate Modulators of Wnt and Shh Morphogen Gradients. Journal of Visualized Experiments, 2015, , e53162.	0.3	2
9	Computational approaches for understanding the diagnosis and treatment of Parkinson's disease. IET Systems Biology, 2015, 9, 226-233.	1.5	15
10	Sulf1 has ligand-dependent effects on canonical and non-canonical Wnt signalling. Journal of Cell Science, 2015, 128, 1408-1421.	2.0	15
11	Sulf1 influences the Shh morphogen gradient during the dorsal ventral patterning of the neural tube in Xenopus tropicalis. Developmental Biology, 2014, 391, 207-218.	2.0	23
12	Wnt-dependent osteogenic commitment of bone marrow stromal cells using a novel GSK3β inhibitor. Stem Cell Research, 2014, 12, 415-427.	0.7	34
13	Sulf1 modulates BMP signaling and is required for somite morphogenesis and development of the horizontal myoseptum. Developmental Biology, 2013, 378, 107-121.	2.0	21
14	Early transcriptional targets of MyoD link myogenesis and somitogenesis. Developmental Biology, 2012, 371, 256-268.	2.0	19
15	Cyclin E is recruited to the nuclear matrix during differentiation, but is not recruited in cancer cells. Nucleic Acids Research, 2011, 39, 2671-2677.	14.5	16
16	FGF Signalling in Vertebrate Development. Colloquium Series on Developmental Biology, 2010, 1, 1-75.	0.2	31
17	Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2. Developmental Biology, 2010, 341, 375-388.	2.0	11
18	Characterisation of the Fibroblast Growth Factor Dependent Transcriptome in Early Development. PLoS ONE, 2009, 4, e4951.	2.5	44

MARY E POWNALL

#	Article	IF	CITATIONS
19	Complementary expression of HSPG 6-O-endosulfatases and 6-O-sulfotransferase in the hindbrain of Xenopus laevis. Gene Expression Patterns, 2009, 9, 166-172.	0.8	12
20	FGF signalling modulates transcriptional repression by <i>Xenopus</i> grouchoâ€relatedâ€4. Biology of the Cell, 2009, 101, 301-308.	2.0	17
21	Extracellular regulation of developmental cell signaling by XtSulf1. Developmental Biology, 2008, 320, 436-445.	2.0	57
22	Molecular characterisation of a candidate gut sucrase in the pea aphid, Acyrthosiphon pisum. Insect Biochemistry and Molecular Biology, 2007, 37, 307-317.	2.7	55
23	Expression of enzymes involved in thyroid hormone metabolism during the early development of Xenopus tropicalis. Biology of the Cell, 2007, 99, 151-163.	2.0	35
24	FGF4 regulates blood and muscle specification in Xenopus laevis. Biology of the Cell, 2007, 99, 165-173.	2.0	18
25	Xenopus tropicalis peroxidasin gene is expressed within the developing neural tube and pronephric kidney. Developmental Dynamics, 2005, 232, 377-384.	1.8	23
26	A consensus Oct1 binding site is required for the activity of the Xenopus Cdx4 promoter. Developmental Biology, 2005, 282, 509-523.	2.0	9
27	Hedgehog regulation of superficial slow muscle fibres in Xenopusand the evolution of tetrapod trunk myogenesis. Development (Cambridge), 2004, 131, 3249-3262.	2.5	66
28	QSulf1, a heparan sulfate 6-O-endosulfatase, inhibits fibroblast growth factor signaling in mesoderm induction and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4833-4838.	7.1	186
29	Cloning and characterisation of Myf5 and MyoD orthologues in Xenopus tropicalis. Biology of the Cell, 2003, 95, 555-561.	2.0	10
30	Myogenic Regulatory Factors and the Specification of Muscle Progenitors in Vertebrate Embryos. Annual Review of Cell and Developmental Biology, 2002, 18, 747-783.	9.4	506
31	eFGF is required for activation of <i>XmyoD</i> expression in the myogenic cell lineage of <i>Xenopus laevis</i> . Development (Cambridge), 2002, 129, 1307-1315.	2.5	56
32	eFGF is required for activation of XmyoD expression in the myogenic cell lineage of Xenopus laevis. Development (Cambridge), 2002, 129, 1307-15.	2.5	16
33	Regulation of Hox gene expression and posterior development by the Xenopus caudal homologue Xcad3. EMBO Journal, 1998, 17, 3413-3427.	7.8	171
34	More to patterning thanSonic hedgehog. BioEssays, 1994, 16, 381-383.	2.5	6
35	Sequential activation of three myogenic regulatory genes during somite morphogenesis in quail embryos. Developmental Biology, 1992, 151, 67-79.	2.0	193