Alexandre Pohl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8295688/publications.pdf Version: 2024-02-01

Διεχλήρας Ρομι

#	Article	IF	CITATIONS
1	Post-extinction recovery of the Phanerozoic oceans and biodiversity hotspots. Nature, 2022, 607, 507-511.	13.7	15
2	Dataset of Phanerozoic continental climate and Köppen–Geiger climate classes. Data in Brief, 2022, 43, 108424.	0.5	2
3	Truncated bimodal latitudinal diversity gradient in early Paleozoic phytoplankton. Science Advances, 2021, 7, .	4.7	20
4	Quantitative comparison of geological data and model simulations constrains early Cambrian geography and climate. Nature Communications, 2021, 12, 3868.	5.8	15
5	Decreasing Phanerozoic extinction intensity as a consequence of Earth surface oxygenation and metazoan ecophysiology. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
6	Vertical decoupling in Late Ordovician anoxia due to reorganization of ocean circulation. Nature Geoscience, 2021, 14, 868-873.	5.4	30
7	Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nature Geoscience, 2020, 13, 65-70.	5.4	39
8	Revising the timing and causes of the Urgonian rudistid-platform demise in the Mediterranean Tethys. Global and Planetary Change, 2020, 187, 103124.	1.6	16
9	Carbonate platform production during the Cretaceous. Bulletin of the Geological Society of America, 2020, 132, 2606-2610.	1.6	11
10	Global distribution of modern shallow-water marine carbonate factories: a spatial model based on environmental parameters. Scientific Reports, 2019, 9, 16432.	1.6	29
11	Marine carbonate factories: a global model of carbonate platform distribution. International Journal of Earth Sciences, 2019, 108, 1773-1792.	0.9	37
12	Quantifying the paleogeographic driver of Cretaceous carbonate platform development using paleoecological niche modeling. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 514, 222-232.	1.0	20
13	Possible patterns of marine primary productivity during the Great Ordovician Biodiversification Event. Lethaia, 2018, 51, 187-197.	0.6	17
14	A sea-level fingerprint of the Late Ordovician ice-sheet collapse. Geology, 2018, 46, 595-598.	2.0	9
15	Ocean Circulation in the Toarcian (Early Jurassic): A Key Control on Deoxygenation and Carbon Burial on the European Shelf. Paleoceanography and Paleoclimatology, 2018, 33, 994-1012.	1.3	59
16	An early Cambrian greenhouse climate. Science Advances, 2018, 4, eaar5690.	4.7	67
17	The climatic significance of Late Ordovicianâ€early Silurian black shales. Paleoceanography, 2017, 32, 397-423.	3.0	42
18	Glacial onset predated Late Ordovician climate cooling. Paleoceanography, 2016, 31, 800-821.	3.0	79

Alexandre Pohl

#	Article	IF	CITATIONS
19	High dependence of Ordovician ocean surface circulation on atmospheric CO2 levels. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 458, 39-51.	1.0	61
20	High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician. Nature Communications, 2016, 7, 12113.	5.8	72
21	Effect of the Ordovician paleogeography on the (in)stability of the climate. Climate of the Past, 2014, 10, 2053-2066.	1.3	44
22	The Bossons glacier protects Europe's summit from erosion. Earth and Planetary Science Letters, 2013, 375, 135-147.	1.8	18