Dilfuza jabborova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8295486/publications.pdf Version: 2024-02-01

DILEUZA IABBODOVA

#	Article	IF	CITATIONS
1	Composition of Zingiber officinale Roscoe (Ginger), Soil Properties and Soil Enzyme Activities Grown in Different Concentration of Mineral Fertilizers. Horticulturae, 2022, 8, 43.	2.8	3
2	The Integrated Effect of Microbial Inoculants and Biochar Types on Soil Biological Properties, and Plant Growth of Lettuce (Lactuca sativa L.). Plants, 2022, 11, 423.	3.5	11
3	Exogenous Putrescine Increases Heat Tolerance in Tomato Seedlings by Regulating Chlorophyll Metabolism and Enhancing Antioxidant Defense Efficiency. Plants, 2022, 11, 1038.	3.5	23
4	Characterization, enzymatic and biochemical properties of endophytic bacterial strains of the medicinal plant Ajuga turkestanica (Rgl.) Brig (Lamiaceae). Journal of King Saud University - Science, 2022, 34, 102183.	3.5	4
5	Antimicrobial activities of herbal plants from Uzbekistan against human pathogenic microbes. Environmental Sustainability, 2021, 4, 87-94.	2.8	8
6	The Chemical Element Composition of Turmeric Grown in Soil–Climate Conditions of Tashkent Region, Uzbekistan. Plants, 2021, 10, 1426.	3.5	8
7	Beneficial Features of Biochar and Arbuscular Mycorrhiza for Improving Spinach Plant Growth, Root Morphological Traits, Physiological Properties, and Soil Enzymatic Activities. Journal of Fungi (Basel,) Tj ETQq1 1	0.78 5 4314	rg ₿ ₮ /Overlo
8	Mineral Fertilizers Improves the Quality of Turmeric and Soil. Sustainability, 2021, 13, 9437.	3.2	17
9	Growth Response of Ginger (Zingiber officinale), Its Physiological Properties and Soil Enzyme Activities after Biochar Application under Greenhouse Conditions. Horticulturae, 2021, 7, 250.	2.8	17
10	Impact of mineral fertilizers on mineral nutrients in the ginger rhizome and on soil enzymes activities and soil properties. Saudi Journal of Biological Sciences, 2021, 28, 5268-5274.	3.8	25
11	Biochar and Arbuscular mycorrhizal fungi mediated enhanced drought tolerance in Okra (Abelmoschus esculentus) plant growth, root morphological traits and physiological properties. Saudi Journal of Biological Sciences, 2021, 28, 5490-5499.	3.8	32
12	Growth attributes, biochemical modulations, antioxidant enzymatic metabolism and yield in Brassica napus varieties for salinity tolerance. Saudi Journal of Biological Sciences, 2021, 28, 5469-5479.	3.8	18
13	Impacts of biochar on basil (Ocimum basilicum) growth, root morphological traits, plant biochemical and physiological properties and soil enzymatic activities. Scientia Horticulturae, 2021, 290, 110518.	3.6	37
14	Plant growth promoting bacteria Bacillus subtilis promote growth and physiological parameters of Zingiber officinale Roscoe. Plant Science Today, 2021, 8, 66-71.	0.7	26
15	Co-inoculation of rhizobacteria promotes growth, yield, and nutrient contents in soybean and improves soil enzymes and nutrients under drought conditions. Scientific Reports, 2021, 11, 22081.	3.3	58
16	Interactive Impact of Biochar and Arbuscular Mycorrhizal on Root Morphology, Physiological Properties of Fenugreek (Trigonella foenum-graecum L.) and Soil Enzymatic Activities. Agronomy, 2021, 11, 2341.	3.0	14
17	Beneficial effects of biochar application on lettuce (Lactuca sativa L.) growth, root morphological traits and physiological properties. Annals of Phytomedicine an International Journal, 2021, 10, .	0.1	2
18	Co-Inoculation of Rhizobacteria and Biochar Application Improves Growth and Nutrientsin Soybean and Enriches Soil Nutrients and Enzymes. Agronomy, 2020, 10, 1142.	3.0	70

DILFUZA JABBOROVA

#	Article	IF	CITATIONS
19	Plant microbiome: source for biologically active compounds. , 2020, , 1-9.		4
20	Isolation and characterization of endophytic bacteria from ginger (Zingiber officinale Rosc.). Annals of Phytomedicine an International Journal, 2020, 9, .	0.1	34
21	Phytochemical, pharmacological and biological properties of Ajuga turkestanica (Rgl.) Brig (Lamiaceae). Annals of Phytomedicine an International Journal, 2020, 9, .	0.1	6
22	Antibacterial, Antifungal, and Antiviral Properties of Medical Plants. Microorganisms for Sustainability, 2019, , 51-65.	0.7	2
23	Enhancement of Plant Growth, Nodulation and Yield of Mungbean (Vigna radiate L.) by Microbial Preparations. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 2382-2388.	0.1	1
24	Medicinal Plants of Uzbekistan and Their Traditional Uses. , 2018, , 211-237.		9
25	Interactive Effects of Nutrients and Bradyrhizobium japonicum on the Growth and Root Architecture of Soybean (Glycine max L.). Frontiers in Microbiology, 2018, 9, 1000.	3.5	48
26	Coordination between <i>Bradyrhizobium</i> and <i>Pseudomonas</i> alleviates salt stress in soybean through altering root system architecture. Journal of Plant Interactions, 2017, 12, 100-107.	2.1	145
27	Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress. Plant and Soil, 2016, 405, 35-45.	3.7	116
28	Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid. Saudi Journal of Biological Sciences, 2015, 22, 773-779.	3.8	109
29	Alleviation of Salt Stress in Legumes by Co-inoculation with Pseudomonas and Rhizobium. , 2013, , 291-303.		25